Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các câu sau, câu nào là mệnh đề?
Mệnh đề phủ định của "20 là số hợp số" là
Cho A, B, C là ba tập hợp được minh họa bằng sơ đồ Ven như hình vẽ:
Phần gạch sọc trong hình vẽ trên là tập hợp nào sau đây?
Điểm A(−1;3) là điểm không thuộc miền nghiệm của bất phương trình nào sau đây?
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Đẳng thức nào sau đây sai?
Cho tam giác ABC có A=45∘,AB=6,B=75∘. Độ dài cạnh BC bằng
Cho tam giác ABC có độ dài các cạnh là a, b và c. Mệnh đề nào sau đây đúng?
Cho các tập hợp A={x∈N(4−x2)(x2−5x+4)=0}; B={x∈Zx là ước của 4}. Tập hợp A∩B là
Phần không bị gạch chéo ở hình vẽ biểu diễn miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
Giá trị của biểu thức A=sin251∘+sin255∘+sin239∘+sin235∘ là
Cho góc α thỏa mãn cosα=31. Giá trị của biểu thức P=sinα+cosα1 bằng
Cho ba tập A=[−2;0], B={x∈R−1<x<0}, C={x∈R∣x∣<2}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) B=(−1;0). |
|
b) C=(−∞;−2)∪(2;+∞). |
|
c) A∩C=(−2;0]. |
|
d) (A∩C)\B=(−2;−1]. |
|
Đô thích ăn hai loại trái cây là cam và xoài, mỗi tuần mẹ cho Đô 200 nghìn đồng để mua trái cây. Biết rằng giá cam là 15 000 đồng/1 kg, giá xoài là 30 000 đồng/1 kg. Gọi x,y (với a>0;y>0) lần lượt là số ki-lô-gam cam và xoài mà Đô có thể mua về sử dụng trong một tuần.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Trong tuần, số tiền Đô có thể mua cam là 15000x đồng, số tiền An có thể mua xoài là 30000y đồng. |
|
b) 3x+6y≥40. |
|
c) Đô không thể mua đủ 5 kg cam, 4 kg xoài sử dụng trong tuần. |
|
d) Đô có thể mua 4 kg cam, 6 kg xoài sử dụng trong tuần. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho cosα=−32 và α∈(90∘;180∘).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) sinα>0. |
|
b) sinα=−35. |
|
c) cotα=−52. |
|
d) tanα=25. |
|
Trong đợt quyên góp ủng hộ đồng bào miền Bắc bị lũ lụt năm 2024, có 25 học sinh lớp 2A đã tham gia ủng hộ, mỗi học sinh ủng hộ nhiều nhất hai tờ tiền khác nhau trong ba loại tờ tiền mệnh giá 5 000 đồng, 10 000 đồng và 20 000 đồng. Biết rằng số học sinh đã tham gia ủng hộ thỏa mãn đồng thời ba kết quả sau:
(1) Số học sinh chỉ ủng hộ một tờ 5 000 đồng bằng tổng số học sinh chỉ ủng hộ một tờ 10 000 đồng và số học sinh chỉ ủng hộ một tờ 20 000 đồng.
(2) Trong số học sinh không ủng hộ tờ 5 000 đồng thì số học sinh có ủng hộ tờ 10 000 đồng nhiều gấp hai lần số học sinh có ủng hộ tờ 20 000 đồng.
(3) Số học sinh chỉ ủng hộ một tờ 5 000 đồng nhiều hơn số học sinh ủng hộ tờ 5 000 đồng và một tờ khác là 1 học sinh.
Có bao nhiêu học sinh lớp 2A chỉ ủng hộ một tờ 10 000 đồng?
Trả lời:
Cho bất phương trình x+3y−12≥0. Có bao nhiêu số nguyên m để cặp số (m2;m2+2m−2) không phải là nghiệm của bất phương trình đã cho.
Trả lời:
Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa cho sản phẩm mới của công ty cần thuê xe để chở trên 140 người và trên 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó xe loại A có 10 chiếc, xe loại B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu. Công ty có kế hoạch thuê x xe loại A và y xe loại B để chi phí vận chuyển là thấp nhất. Biết rằng xe A chỉ chở tối đa 20 người và 0,6 tấn hàng. Xe B chở tối đa 10 người và 1,5 tấn hàng. Tính x+y.
Trả lời:
Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB=40 m, CAB=45∘ và CBA=70∘.
Sau khi đo đạc và tính toán ta được khoảng cách AC bằng bao nhiêu mét? (làm tròn kết quả đến hàng phần mười)
Trả lời:
Cho tam giác nhọn ABC có a=3,b=4 và diện tích S=33. Bán kính R của đường tròn ngoại tiếp tam giác có dạng R=ba, với m,n∈N,b<5. Tính giá trị của biểu thức T=m+n.
Trả lời:
Tìm giá trị nhỏ nhất của biết thức F=x+y trên miền xác định bởi hệ ⎩⎨⎧x≥05x−4y≤104x+5y≤10. (làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời: