Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các câu sau, có bao nhiêu câu là mệnh đề chứa biến?
a) Bạn học toán tốt không?
b) 128 chia hết cho 4.
c) 5x−4>x2.
d) (2n+3) chia hết cho 4.
Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp K={x∈R∣x∣≤3} ta có
Hệ bất phương trình nào sau đây không là hệ bất phương trình bậc nhất hai ẩn?
Cho bất phương trình −2x+3y+2≤0 có tập nghiệm là S. Khẳng định nào sau đây đúng?
Cho hình chữ nhật ABCD. Vectơ nào sau đây có độ dài lớn nhất?
Giá trị của B=cos273∘+cos287∘+cos23∘+cos217∘ là
Cho tam giác ABC có độ dài các cạnh là a, b và c. Mệnh đề nào sau đây đúng?
Cho A=(−∞;−2], B=[3;+∞), C=(0;4). Khi đó tập (A∪B)∩C là
Cho A là tập hợp các số tự nhiên chẵn không lớn hơn 10, B={n∈Nn≤6}, C={n∈N4≤n≤10}. Tập hợp A∩(B∪C) là
Phần không tô màu là hình vẽ biểu diễn miền nghiệm của hệ bất phương trình nào dưới đây?
Phần tô màu (không bao gồm đường thẳng Δ) trong hình vẽ là miền nghiệm của bất phương trình nào sau đây?
Cho A là tập hợp các học sinh lớp 10 đang học ở trường X và B là tập hợp các học sinh đang học môn Tiếng Anh của trường X.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A∩B là tập hợp các học sinh lớp 10 học môn Tiếng Anh ở trường X. |
|
b) A\B là tập hợp những học sinh lớp 10 và không học Tiếng Anh ở trường X. |
|
c) A∪B là tập hợp các học sinh lớp 10 và học sinh học môn Tiếng Anh ở trường X. |
|
d) B\A là tập hợp các học sinh học lớp 10 ở trường X nhưng không học môn Tiếng Anh. |
|
Một đội sản xuất cần 3 giờ để làm xong sản phẩm loại I và 2 giờ để làm xong sản phẩm loại II. Biết thời gian tối đa cho việc sản xuất hai sản phẩm trên là 18 giờ. Gọi x,y lần lượt là số sản phẩm loại I, loại II mà đội làm được trong thời gian cho phép.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng thời gian (giờ) làm xong sản phẩm loại I là 2x, tổng thời gian làm xong sản phẩm loại II là 3y. |
|
b) 3x+2y<18. |
|
c) Khi số sản phẩm loại I là 3, loại II là 4 thì thời gian đội đó làm nằm trong thời gian cho phép. |
|
d) Khi số sản phẩm loại I là 2, loại II là 6 thì thời gian đội đó làm vượt quá thời gian cho phép. |
|
Cho AB=−CD.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) AB và CD cùng hướng. |
|
b) AB và CD cùng độ dài. |
|
c) ABCD là hình bình hành. |
|
d) AB+DC=0. |
|
Cho sinα=31.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cos2α=98. |
|
b) A=sin2α+3cos2α=935. |
|
c) B=5sin2α−cos2α=−31. |
|
d) C=sin2α+3cos2α+cos2α−7sin2α=2. |
|
Cho hai tập khác rỗng A=(m−1;4];B=(−2;2m+2),m∈R. Có bao nhiêu số nguyên m để A∩B=∅?
Trả lời:
Trong đợt khảo sát nghề, giáo viên chủ nhiệm lớp 10D đưa ra ba nhóm ngành cho học sinh lựa chọn, đó là: Giáo dục, Y tế, Công nghệ thông tin. Học sinh có thể chọn từ một đến ba nhóm ngành nêu trên hoặc không chọn nhóm ngành nào trong ba nhóm ngành trên. Giáo viên chủ nhiệm thống kê theo từng nhóm ngành và được kết quả: có 6 học sinh chọn nhóm ngành Giáo dục, 9 học sinh chọn nhóm ngành Y tế, 10 học sinh chọn nhóm ngành Công nghệ thông tin, 22 học sinh không chọn nhóm ngành nào trong ba nhóm trên. Nếu thống kê số lượng học sinh chọn theo từng hai nhóm ngành được kết quả: có 3 học sinh chọn hai nhóm ngành Giáo dục và Y tế, 2 học sinh chọn hai nhóm ngành Y tế và Công nghệ thông tin, 3 học sinh chọn hai nhóm ngành Giáo dục và Công nghệ thông tin. Có bao nhiêu học sinh chọn cả ba nhóm ngành nêu trên biết lớp 10D có 40 học sinh?
Trả lời:
Cho tam giác ABC có A(0;3);B(−1;2);C(2;1). Có bao nhiêu giá trị nguyên của tham số m để điểm M(m;22m−1) nằm bên trong tam giác ABC?
Trả lời:
Trong một cuộc thi pha chế đồ uống gồm hai loại là A và B, mỗi đội chơi được sử dụng tối đa 24 g hương liệu, 9 cốc nước lọc và 210 g đường. Để pha chế một cốc đồ uống loại A cần 1 cốc nước lọc, 30 g đường và 1 g hương liệu. Để pha chế một cốc đồ uống loại B cần 1 cốc nước lọc, 10 g đường và 4 g hương liệu. Mỗi cốc đồ uống loại A nhận được 6 điểm thưởng, mỗi cốc đồ uống loại B nhận được 8 điểm thưởng. Để đạt được số điểm thưởng cao nhất, đội chơi cần pha chế x cốc đồ uống loại A, y cốc đồ uống loại B. Tính x+y.
Trả lời:
Gọi a, b lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức L=y−x, với x và y thỏa mãn hệ bất phương trình ⎩⎨⎧2x+3y−6≤02x−3y−1≤0x≥0. Tính 11a+12b.
Trả lời:
Hai tàu đánh cá cùng xuất phát từ bến A và đi thẳng đều về hai vùng biển khác nhau, theo hai hướng tạo với nhau góc 120∘. Tàu thứ nhất đi với tốc độ 8 hải lí một giờ và tàu thứ hai đi với tốc độ 10 hải lí một giờ.
Sau mấy giờ thì khoảng cách giữa hai tàu là 60 hải lí? (Làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời: