Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các câu dưới đây, câu nào là mệnh đề toán học?
Kí hiệu H là tập hợp các học sinh của lớp 10A. T là tập hợp các học sinh nam, G là tập hợp các học sinh nữ của lớp 10A đó. Khẳng định nào sau đây sai?
Cho bất phương trình −2x+3y+2≤0 có tập nghiệm là S. Khẳng định nào sau đây đúng?
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Đẳng thức nào sau đây đúng?
Cho tam giác ABC có B=45∘, cạnh AC=22 cm. Bán kính R của đường tròn ngoại tiếp tam giác ABC bằng
Cho tam giác ABC với BC=7 cm, AC=9 cm, AB=4 cm. Giá trị cosA bằng
Cho A={x∈Nx⋮6}; B={x∈Nx⋮2,x⋮3}. Khẳng định nào sau đây sai?
Phần không bị gạch chéo ở hình vẽ biểu diễn miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
Giá trị của biểu thức A=tan1∘.tan2∘.tan3∘.....tan88∘.tan89∘ là
Cho tanα=2. Giá trị của A=sinα−cosα3sinα+cosα là
Cho hai tập hợp A={x∈Rx+3<4+2x}, B={x∈R5x−3<4x−1}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A=(−1;+∞). |
|
b) B=(−∞;2]. |
|
c) A∩B=(−1;2). |
|
d) Tập tất cả các số tự nhiên thuộc cả hai tập A và B là {0;1}. |
|
Một xưởng sản xuất định lựa chọn hai loại máy chế biến loại I và loại II. Máy loại I mỗi ngày một máy chế biến được 300 kg sản phẩm, máy loại II mỗi ngày một máy chế biến được 450 kg sản phẩm. Biết rằng, để có lãi mỗi ngày xưởng phải sản xuất được nhiều hơn 50 tấn sản phẩm. Gọi x, y tương ứng là số lượng máy loại I và máy loại II xưởng chọn để sản xuất.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khối lượng sản phẩm tạo ra trong một ngày từ số lượng máy trên là F(x;y)=30x+45y. |
|
b) Để đảm bảo xưởng có lãi mỗi ngày, ta cần 6x+9y−1000>0. |
|
c) Xưởng nên lựa chọn 50 máy chế biến loại I và 80 máy chế biến loại II để đảm bảo có lãi. |
|
d) Nếu xưởng lựa chọn 70 máy chế biến loại I và 60 máy chế biến loại II sẽ không đảm bảo có lãi. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho sinα=31.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cos2α=98. |
|
b) A=sin2α+3cos2α=935. |
|
c) B=5sin2α−cos2α=−31. |
|
d) C=sin2α+3cos2α+cos2α−7sin2α=2. |
|
Một lớp học có 25 học sinh giỏi môn Toán, 23 học sinh giỏi môn Lí, 14 học sinh giỏi cả môn Toán và Lí và có 6 học sinh không giỏi môn nào cả. Lớp học đó có bao nhiêu học sinh?
Trả lời:
Trong hệ tọa độ Oxy, cho bất phương trình 2x+y≥2 có miền nghiệm D. Dựng hình vuông ABCO có cạnh a nằm trong góc phần tư thứ nhất, với O(0;0) là gốc tọa độ. Biết rằng diện tích phần chung giữa miền nghiệm D và hình vuông ABCO bằng 2022. Tính a (làm tròn kết quả đến hàng đơn vị).
Trả lời:
Người ta định dùng hai loại nguyên liệu để chiết xuất ít nhất 120 kg hóa chất A và 9 kg hóa chất B. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng có thể chiết xuất được 20 kg chất A và 0,6 kg chất B. Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng có thể chiết xuất được 10 kg chất A và 1,5 kg chất B. Cần phải dùng tổng bao nhiêu tấn nguyên liệu cả hai loại để chi phí mua nguyên liệu là ít nhất. Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II. (làm tròn đến chữ số hàng phần mười)
Trả lời:
Trên nóc một tòa nhà có một cột ăngten cao 5 m. Từ vị trí quan sát A cao 7 m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50∘ và 40∘ so với phương nằm ngang.
Tính chiều cao của tòa nhà. (Làm tròn kết quả đến chữ số thập phân thứ nhất của đơn vị mét)
Trả lời:
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số rR có dạng a+bc, với a,b,c∈N và c là số nguyên tố. Tính giá trị của biểu thức T=a+b+c.
Trả lời:
Tìm giá trị nhỏ nhất của biểu thức F=3y−2x trên miền xác định bởi hệ ⎩⎨⎧x−y≤6x≥2x+y≤4.
Trả lời: