tìm các chữ số a;b biết \(\frac{ab}{\left|a-b\right|}\) là 1 số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=VP\)=> ĐPCM
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(\text{đ}pcm\right)\)
Gọi d = ƯCLN(a2; a+ b)
=> a2 chia hết cho d;
a+ b chia hết cho d => a.(a+b) chia hết cho d hay a2 + ab chia hết cho d
=> a2 + ab - a2 chia hết cho d => ab chia hết cho d mà a;b nguyên tố cùng nhau nên
a chia hết cho d hoặc b chia hết cho d
+) Nếu a chia hết cho d: Ta có a + b chia hết cho d => b chia hết cho d
=> d \(\in\) ƯC (a;b) mà ƯCLN(a; b) = 1 => d = 1 => ƯCLN(a2; a+ b) = 1
+) Nếu b chia hết cho d => a chia hết cho d (do a+ b chia hết cho d)
=> d \(\in\) ƯC (a;b) mà ƯCLN(a; b) = 1 => d = 1 => ƯCLN(a2; a+ b) = 1
Vậy ƯCLN(a2; a+ b) = 1
Gọi d = ƯCLN(a2; a+ b)
=> a2 chia hết cho d;
a+ b chia hết cho d => a.(a+b) chia hết cho d hay a2 + ab chia hết cho d
=> a2 + ab - a2 chia hết cho d => ab chia hết cho d mà a;b nguyên tố cùng nhau nên
a chia hết cho d hoặc b chia hết cho d
+) Nếu a chia hết cho d: Ta có a + b chia hết cho d => b chia hết cho d
=> d $\in$∈ ƯC (a;b) mà ƯCLN(a; b) = 1 => d = 1 => ƯCLN(a2; a+ b) = 1
+) Nếu b chia hết cho d => a chia hết cho d (do a+ b chia hết cho d)
=> d $\in$∈ ƯC (a;b) mà ƯCLN(a; b) = 1 => d = 1 => ƯCLN(a2; a+ b) = 1
Vậy ƯCLN(a2; a+ b) =
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3
=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
đúng mình nhé
Ta tìm số tự nhiên n để \(\frac{n+7}{n-2}\) rút gọn được
Gọi d là ước chung nguyên tố của n + 7 và n - 2
=> n+ 7 chia hết cho d
n - 2 chia hết cho d
=> (n+7) - (n- 2) chia hết cho d => 9 chia hết cho d
Mà d nguyên tố => d = 3
=> tìm n để n + 7 chia hết cho 3 và n - 2 chia hết cho 3
Do n + 7 = (n - 2) + 9 nên nếu n - 2 chia hết cho 3 thì n+ 7 sẽ chia hết cho 3
Vậy chỉ cần tìm n để n - 2 chia hết cho 3 => n - 2 = 3k (k \(\in\) N* vì n > 2) => n = 3k + 2
Với n = 3k + 2 (k \(\in\) N*) thì \(\frac{n+7}{n-2}\) rút gọn được
=> Với n \(\ne\) 3k + 2 (k \(\in\) N*) hay n là số chia hết cho 3 hoặc chia cho 3 dư 1 thì \(\frac{n+7}{n-2}\) tối giản
Bạn chia ra hai trường hợp : n lẻ hoặc chẵn
Nếu n lẻ thì n + 1993 ^1994 chia hết cho 2 => tích đó chia hết cho 2
Trường hợp còn lại tương tự , mình chỉ gợi ý thôi bạn tự làm nha .
Bạn chia ra hai trường hợp : n là số lẻ hoặc chẵn
Nếu n lẻ thì n + 1993 ^1994 chia hết cho 2 => tích đó chia hết cho 2
Trường hợp còn lại tương tự , mình ko chắc lắm nhưng chúc bn giải đc bài còn lại!!
a.
=2(4a+1)+17/4a+1
=2(4a)+1/4a+1 + 17/4a+1
=2 + 17/4a+1
=>17/4a+1=z<=>17 :(4a+1)
<=>A=0;4 vì=N=>a=0;4 thì 8a+19/4a+1
(Cách lám tương tự)
Mình không biết làm bài a chỉ biết làm bài b thôi.
b) Gọi d là ước nguyên tố của 2n+7 và 5n+2. Ta có:
5(2n+7)-2(5n+2) chia hết cho d
=> 31 chia hết cho d => d=31
Ta thấy 3n+2 chia hết cho 31 khi đó 5n+2 chia hết cho 31
<=> 2n+7-31 chia hết cho 31
<=> 2(n-12) chia hết cho 31
<=> n-12 chia hết cho 31
=> n=31K+12(K thuộc N)
Vậy với n # 31K+12 thì phân số tối giản.
Bài a chắc cũng làm theo cách này thôi bạn à chỉ tội tôi chưa nghĩ ra. Bạn cố gắng suy nghĩ nhé
N = (n+1)(n+2)(n+3)...(n+n) /2n
= (n+1)(n+2)(n+3)... 2n /2n
= (n+1)(n+2)(n+3) ... (n+n-1) {Rút gọn}
Vậy N là số tự nhiên.
N = (n+1)(n+2)(n+3)...(n+n) /2n
= (n+1)(n+2)(n+3)... 2n /2n
= (n+1)(n+2)(n+3) ... (n+n-1) {Rút gọn}
Vậy N là số tự nhiên.
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 ≤ abc ≤ 999 nên:
100 ≤ n^2 -1 ≤ 999 => 101 ≤ n^2 ≤ 1000 => 11 ≤ 31 => 39 ≤ 4n - 5 ≤ 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
Thử lại thấy đúng. Vậy có một số tự nhiên có ba chữ số thoả mãn yêu cầu đề bài là 675
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 $\le$≤ abc $\le$≤ 999 nên:
100 $\le$≤ n^2 -1 $\le$≤ 999 => 101 $\le$≤ n^2 $\le$≤ 1000 => 11 $\le$≤ 31 => 39 $\le$≤ 4n - 5 $\le$≤ 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
Thử lại thấy đúng. Vậy có một số tự nhiên có ba chữ số thoả mãn yêu cầu đề bài là 675
do 183 chia hết cho 3 nhưng ko chia hết cho 9,9.b chia hết cho 9
=>3^a chia hết cho 3 và ko chia hết cho 9
=>3^a=3
=>a=1
9.b=180<=>b=20
vậy a=1,b=20
a=2,b=1hoac a=1,b=2
minh ko chac dau .......!
Muốn ab/|a-b| nguyên tố thì a=2;b=1
Thử lại: 2.1/2-1=2/1=2 (Chọn)
ĐS; a=2; b=1