K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

mẫu các phân số này có dạng a4 + 4 = a4 + 4a2 + 4 - 4a2 = (a2 - 2a + 2)(a2 + 2a + 2)

do đó các phân số sẽ biến đổi như sau:

\(\frac{a}{4+a^4}=\frac{a}{\left(a^2-2a+2\right)\left(a^2+2a+2\right)}=\frac{1}{4}\frac{4a}{\left(a^2-2a+2\right)\left(a^2+2a+2\right)}\)

\(=\frac{1}{4}\left(\frac{1}{a^2-2a+2}-\frac{1}{a^2+2a+2}\right)\)

do đó biểu thức M = \(\frac{1}{4}\left(\frac{1}{1}-\frac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\right)=\frac{n^2}{4n^2+1}\)

18 tháng 5 2017

Câu 1/

\(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\left(1\right)\\3xy-x-y=1\left(2\right)\end{cases}}\)

Xét PT (2) ta có:

\(\left(2\right)\Leftrightarrow3xy-y=1+x\)

\(\Leftrightarrow y=\frac{1+x}{3x-1}\)

\(\Leftrightarrow y+1=\frac{4x}{3x-1}\)

\(\Leftrightarrow\frac{x}{y+1}=\frac{3x-1}{4}\left(3\right)\)

Ta lại có:

\(y=\frac{1+x}{3x-1}\)

\(\Leftrightarrow\frac{y}{x+1}=\frac{1}{3x-1}\left(4\right)\)

Từ PT (1) ta có

\(\left(1\right)\Leftrightarrow\left(\frac{3x-1}{4}\right)^2+\left(\frac{1}{3x-1}\right)^2=\frac{1}{2}\)

\(\Leftrightarrow9x^4-12x^3-2x^2+4x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(3x+1\right)^2=0\)

Làm tiếp nhé

18 tháng 5 2017

Câu 2/

a/ \(x^2-1=3\sqrt{3x+1}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(3\sqrt{3x+1}\right)^2\)

\(\Leftrightarrow x^4-2x^2-27x-8=0\)

\(\Leftrightarrow\left(x^2-3x-1\right)\left(x^2+3x+8\right)=0\)

Tới đây thì đơn giản rồi nhé

b/ \(\sqrt{2-x}+\sqrt{2+x}+\sqrt{4-x^2}=2\)

Đặt \(\hept{\begin{cases}\sqrt{2-x}=a\\\sqrt{2+x}=b\end{cases}\left(a,b\ge0\right)}\)

Thì ta có:

\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-2ab=4\\\left(a+b\right)+ab=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=2\\ab=0\end{cases}}\) hoặc \(\hept{\begin{cases}a+b=-4\\ab=6\end{cases}\left(l\right)}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2-x}+\sqrt{2+x}=2\\\sqrt{4-x^2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

PS: Điều kiện xác định bạn tự làm nhé

18 tháng 5 2017

Từ đề bài đẽ thấy 

\(x-y=x^3+y^3>0\)

\(\Rightarrow x>y\)

Giả sử \(x^2+y^2\ge1\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)\ge x-y=x^3+y^3\)

\(\Leftrightarrow y\left(2y^2-xy+x^2\right)\le0\) (sai vì \(\hept{\begin{cases}y>0\\2y^2-xy+x^2>0\end{cases}}\))

Vậy \(x^2+y^2< 1\)

17 tháng 5 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng l: Đoạn thẳng [P, C] Đoạn thẳng m: Đoạn thẳng [M, A] Đoạn thẳng n: Đoạn thẳng [B, N] O = (1.97, 2.92) O = (1.97, 2.92) O = (1.97, 2.92) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm P: Giao điểm của c, j Điểm P: Giao điểm của c, j Điểm P: Giao điểm của c, j Điểm M: Giao điểm của c, k Điểm M: Giao điểm của c, k Điểm M: Giao điểm của c, k Điểm N: Giao điểm của c, i Điểm N: Giao điểm của c, i Điểm N: Giao điểm của c, i Điểm F: Giao điểm của j, f Điểm F: Giao điểm của j, f Điểm F: Giao điểm của j, f Điểm E: Giao điểm của i, g Điểm E: Giao điểm của i, g Điểm E: Giao điểm của i, g Điểm D: Giao điểm của k, h Điểm D: Giao điểm của k, h Điểm D: Giao điểm của k, h Điểm H: Giao điểm của l, m Điểm H: Giao điểm của l, m Điểm H: Giao điểm của l, m

a. Tứ giác CEHD có \(\widehat{HEC}=\widehat{HDC}=90^o\Rightarrow\) nó là tứ giác nội tiếp.

b. Tứ giác BFEC có \(\widehat{BEC}=\widehat{BFC}=90^o\Rightarrow\)nó là tứ giác nội tiếp. Vậy 4 điểm B, C, E, F cùng thuộc một đường tròn.

c. Ta thấy \(\Delta HAE\sim\Delta CAD\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AE}{AD}\Rightarrow AE.AC=AH.AD\)

Ta thấy \(\Delta CBE\sim\Delta CAD\left(g-g\right)\Rightarrow\frac{BC}{AC}=\frac{BE}{AD}\Rightarrow AD.BC=BE.AC\)

d. Ta thấy ngay \(\widehat{PCB}=\widehat{BAM}\) (Cùng phụ với góc ABC)

Mà \(\widehat{BAM}=\widehat{BCM}\) (Góc nội tiếp cùng chắn cung BM)

Vậy nên \(\widehat{PCB}=\widehat{BCM}\) hay CM là phân giác góc \(\widehat{PCB}\)

Lại có \(CM⊥HD\) nên HCM là tam giác cân. Vậy CB là trung trực của HM hay H, M đối xứng nhau qua BC.

e. Ta thấy BFHD là tứ giác nội tiếp nên \(\widehat{FDH}=\widehat{FBH}\) (Góc nội tiếp cùng chẵn cung FH)

 DHEC cùng là tứ giác nội tiếp nên \(\widehat{HDE}=\widehat{HCE}\) (Góc nội tiếp cùng chẵn cung HE)

Mà \(\widehat{FBH}=\widehat{HCE}\) ( Cùng phụ với góc \(\widehat{BAC}\) )

nên \(\widehat{FDH}=\widehat{HDE}\) hay DH là phân giác góc FDE.

Tương tự FH, EH cũng là phân giác góc DFE và DEF.

Vậy tâm đường tròn nội tiếp tam giác DEF chính là H.

HD
28 tháng 3 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

16 tháng 5 2017

Đặt: y + z = a thì ta có

\(x\le2a\)

Từ đề bài thì ta có thể suy ra

\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)

\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)

 \(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)

 Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\) 

16 tháng 5 2017

Làm sao để tách được bởi vì làm sao dự đoán dượcđiểm rơi?

15 tháng 5 2017

Áp dụng BĐT AM-GM ta có: 

\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}\)\(=\frac{1}{2\sqrt{bc}}\)

Tương tự cho 2 BĐT còn lại ta có:

\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Theo AM-GM có

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì

\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

15 tháng 5 2017

từ GT suy ra abc >=1 và a/bc + b/ca + c/ab = 3.

áp dụng BĐT Cauchy : a4 + bc >=2a2v(bc) (v(bc) là căn bc).

nên a2/a4 + bc <=1/2v(bc).

do đó M <= 1/2.(1/v(bc) + 1/v(ca) + 1/v(ab).

ta chứng minh N = (1/v(bc) + 1/v(ca) + 1/v(ab) <=3 là xong.

thật vậy.

giả sử a <=b<=c nên 1/v(bc) <= 1/v(ca)<= 1/v(ab).

áp dụng BĐT Trê bư sep ta được (v(a) + v(b) + v(c))/3 . ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= (v(a)/v(bc) + v(b)/v(ca) + v(c)/v(ab)/3.

ta có v(a) + v(b) + v(c) >=3 căn6(abc)>=3.

nên VT >=((1/v(bc) + 1/v(ca) + 1/v(ab))/3. (1)

lại có (x + y + z)2 <=3(x2 + y2 + z2) nên (VP)2 <= (a/bc + b/ca + c/ab)/3= 1.

hay VP <= 1 (2).

từ (1) và (2) suy ra ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= 1 hay

(1/v(bc) + 1/v(ca) + 1/v(ab) <= 3

tức N <= 3 (đpcm).

(mình chưa biết đánh nên cố đọc nhé!)

15 tháng 5 2017

ta chứng minh VT pt nhỏ hơn \(\sqrt{10}\) nên pt vô nghiệm.

thật vậy.

Áp dụng BĐT Cauchy ta có \(x^2+1\ge2\sqrt{x^2+1}\)

                                                   \(x^2-2x+5\ge2\sqrt{x^2-2x+5}\)

nên VT \(\le\frac{x^2+1+x^2-2x+5}{2}\)

VT \(\le x^2-x+3\le\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\le\frac{11}{4}< \sqrt{10}\)

Vậy PT vô nghiệm.

15 tháng 5 2017

ngược dấu kìa :

ÁP dụng Minkowski:\(VT=\sqrt{x^2+1}+\sqrt{\left(1-x\right)^2+4}\ge\sqrt{\left(x+1-x\right)^2+\left(1+2\right)^2}=\sqrt{10}\)

dấu = xảy ra khi \(\frac{x}{1-x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)

16 tháng 5 2017

Bạn không sửa thì m sửa.

Sửa đề: \(P=\sqrt[3]{\sqrt{\frac{2303}{27}}+6}-\sqrt[3]{\sqrt{\frac{2303}{27}}-6}\)

\(P^3=\sqrt{\frac{2303}{27}}+6-\left(\sqrt{\frac{2303}{27}}-6\right)-\frac{3.11.P}{3}\)

\(\Leftrightarrow P^3=12-11P\)

\(\Leftrightarrow P^3+11P-12=0\)

\(\Leftrightarrow\left(P-1\right)\left(P^2+P+12\right)=0\)

Vì \(P^2+P+12>0\) nên ta có

\(P=1\)

15 tháng 5 2017

Đề bạn chép sai rồi. Sửa lại đi b

14 tháng 5 2017

a) Áp dụng hệ quả định lý thales:

\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)

Áp dụng BĐT bunyakovsky:

\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)

\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)

dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)

b) chưa nghĩ :v

12 tháng 5 2017

Sửa đề

\(\hept{\begin{cases}x+y+z=6\\\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}=6\end{cases}}\)

Điều kiện: \(x+y,y+z,z+x\ge0\)

Đặt \(\hept{\begin{cases}\sqrt{x+y}=a\\\sqrt{y+z}=b\\\sqrt{z+x}=c\end{cases}}\) thì ta có hệ

\(\hept{\begin{cases}a^2+b^2+c^2=12\\a+b+c=6\end{cases}}\)

Ma ta có: 

\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{36}{3}=12\)

Dấu = xảy ra khi \(a=b=c=2\)

\(\Rightarrow x=y=z=2\)

12 tháng 5 2017

Alibaba nguyen dung roi nhung quen chua dat c=\(\sqrt{z+x}\)