giải giúp mình với.mai mình phải thi rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACB}\) chung
Do đó: ΔABC~ΔHAC
Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔHAB~ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
b: Xét ΔEAB vuông tại A và ΔEFC vuông tại F có
\(\widehat{AEB}=\widehat{FEC}\)(hai góc đối đỉnh)
Do đó: ΔEAB~ΔEFC
=>\(\dfrac{EA}{EF}=\dfrac{EB}{EC}\)
=>\(EA\cdot EC=EB\cdot EF\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
=>\(\dfrac{AB}{BC}=\dfrac{HA}{AC}\)
=>\(AB\cdot AC=HA\cdot BC\)
b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có
\(\widehat{MAH}\) chung
Do đó: ΔAMH~ΔAHB
=>\(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)
=>\(AH^2=AM\cdot AB\left(1\right)\)
Xét ΔANH vuông tại N và ΔAHC vuông tại H có
\(\widehat{NAH}\) chung
Do đó: ΔANH~ΔAHC
=>\(\dfrac{AN}{AH}=\dfrac{AH}{AC}\)
=>\(AN\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AM\cdot AB=AN\cdot AC\)
=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN vuông tạiA và ΔACB vuông tại A có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Do đó: ΔAMN~ΔACB
c:
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
=>MN=AH
mà AH=4,8cm
nên MN=4,8(cm)
ΔAMN~ΔACB
=>\(\dfrac{S_{AMN}}{S_{ACB}}=\left(\dfrac{MN}{CB}\right)^2=\left(\dfrac{4.8}{10}\right)^2\)
=>\(S_{AMN}=\left(\dfrac{4.8}{10}\right)^2\cdot24=5,5296\left(cm^2\right)\)
\(S_{AMN}+S_{BMNC}=S_{ABC}\)
=>\(S_{BMNC}=24-5,5296=18,4704\left(cm^2\right)\)
`#3107.101107`
`a)`
`5 - (x - 6) = 4(2x - 3)`
\(\Leftrightarrow5-x+6=8x-12\)
\(\Leftrightarrow-x-8x=-12-5-6\)
\(\Leftrightarrow-9x=-23\)
\(\Leftrightarrow x=\dfrac{-23}{-9}=\dfrac{23}{9}\)
Vậy, \(x=\dfrac{23}{9}\)
`b)`
\(5\left(3x+2\right)-4\left(5-3x\right)=1\)
\(\Leftrightarrow15x+10-20+12x=1\)
\(\Leftrightarrow27x-10=1\)
\(\Leftrightarrow27x=11\)
\(\Leftrightarrow x=\dfrac{11}{27}\)
Vậy, \(x=\dfrac{11}{27}\)
`c)`
\(-4\left(x-3\right)=6x+\left(x-3\right)\)
\(\Leftrightarrow-4x+12=6x+x-3\)
\(\Leftrightarrow-4x-7x=-12-3\)
\(\Leftrightarrow11x=-15\)
\(\Leftrightarrow x=\dfrac{-15}{11}\)
Vậy, \(x=-\dfrac{15}{11}\)
`d)`
\(\dfrac{x}{3}-\dfrac{5x}{6}-\dfrac{5x}{12}=\dfrac{x}{4}-5\)
\(\Leftrightarrow\dfrac{4x}{12}-\dfrac{10x}{12}-\dfrac{5x}{12}=\dfrac{3x}{12}-\dfrac{60}{12}\)
\(\Leftrightarrow4x-10x-5x=3x-60\)
\(\Leftrightarrow-11x-3x=-60\)
\(\Leftrightarrow-14x=-60\)
\(\Leftrightarrow x=\dfrac{-60}{-14}=\dfrac{30}{7}\)
Vậy, \(x=\dfrac{30}{7}\)
`e)`
\(\dfrac{x-1}{2}-\dfrac{x+1}{15}-\dfrac{2x-13}{6}=0\)
\(\Leftrightarrow\dfrac{15\left(x-1\right)}{30}-\dfrac{2\left(x+1\right)}{30}-\dfrac{5\left(2x-13\right)}{30}=0\)
\(\Leftrightarrow15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)=0\)
\(\Leftrightarrow15x-15-2x-2-10x+65=0\)
\(\Leftrightarrow3x+48=0\)
\(\Leftrightarrow3x=-48\)
\(\Leftrightarrow x=-16\)
Vậy, \(x=-16.\)
`f)`
\(\dfrac{3\left(3-x\right)}{8}+\dfrac{2\left(5-x\right)}{3}=\dfrac{1-x}{2}-2\)
\(\Leftrightarrow\dfrac{9\left(3-x\right)}{24}+\dfrac{16\left(5-x\right)}{24}=\dfrac{12\left(1-x\right)}{24}-\dfrac{48}{24}\)
\(\Leftrightarrow27-9x+80-16x=12-12x-48\)
\(\Leftrightarrow-9x-16x+12x=12-48-27-80\)
\(\Leftrightarrow-13x=-143\)
\(\Leftrightarrow x=11\)
Vậy, `x = 11.`
`g)`
\(\dfrac{3\left(5x-2\right)}{4}-2=\dfrac{7x}{3}-5\left(x-7\right)\)
\(\Leftrightarrow\dfrac{9\left(5x-2\right)}{12}-\dfrac{24}{12}=\dfrac{28x}{12}-\dfrac{60\left(x-7\right)}{12}\)
\(\Leftrightarrow45x-18-24=28x-60x+420\)
\(\Leftrightarrow45x-28x+60x=42+420\)
\(\Leftrightarrow77x=462\)
\(\Leftrightarrow x=6\)
Vậy, `x = 6`
`h)`
\(\dfrac{x+5}{2}+\dfrac{3-2x}{4}=x-\dfrac{7+x}{6}\)
\(\Leftrightarrow\dfrac{6\left(x+5\right)}{12}+\dfrac{3\left(3-2x\right)}{12}=\dfrac{12x}{12}-\dfrac{2\left(7+x\right)}{12}\)
\(\Leftrightarrow6x+30+9-6x=12x-14-2x\)
\(\Leftrightarrow-10x=-53\)
\(\Leftrightarrow x=5,3\)
Vậy, `x = 5,3`
`i)`
\(\dfrac{x-3}{11}+\dfrac{x+1}{3}=\dfrac{x+7}{9}-1\)
\(\Leftrightarrow\dfrac{9\left(x-3\right)}{99}+\dfrac{33\left(x+1\right)}{99}=\dfrac{11\left(x+7\right)}{99}-\dfrac{99}{99}\)
\(\Leftrightarrow9x-27+33x+33=11x+77-99\)
\(\Leftrightarrow42x-11x=-22-6\)
\(\Leftrightarrow31x=-28\)
\(\Leftrightarrow x=-\dfrac{28}{31}\)
Vậy, \(x=-\dfrac{28}{31}.\)
a: 5+2x=20-3x
=>2x+3x=20-5
=>3x=15
=>\(x=\dfrac{15}{3}=5\)
b: \(7-\left(2x+4\right)=-\left(x+4\right)\)
=>\(7-2x-4+x+4=0\)
=>7-x=0
=>x=7
c: \(\left(5x+2\right)-3\left(2x+1\right)=-3x+7\)
=>\(5x+2-6x-3=-3x+7\)
=>-3x+7=-x-1
=>-2x=-8
=>x=4
d: \(2x-\left(3-5x\right)=4\left(x+3\right)\)
=>2x-3+5x=4x+12
=>7x-3=4x+12
=>3x=15
=>\(x=\dfrac{15}{3}=5\)
e: \(5\left(2x-3\right)-4\left(5x-7\right)=19-2\left(x+11\right)\)
=>\(10x-15-20x+28=19-2x-22\)
=>\(-10x+13=-2x-3\)
=>-8x=-16
=>x=2
f: \(x^2-\left(x+2\right)\left(x-2\right)=2x\)
=>\(x^2-\left(x^2-4\right)=2x\)
=>\(2x=x^2-x^2+4=4\)
=>\(x=\dfrac{4}{2}=2\)
g: \(\dfrac{1-3x}{6}+x-1=\dfrac{x+2}{2}\)
=>\(\dfrac{1-3x+6\left(x-1\right)}{6}=\dfrac{3x+6}{6}\)
=>1-3x+6x-6=3x+6
=>3x-5=3x+6
=>-5=6(loại)
h: \(\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)
=>\(\dfrac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\dfrac{8\left(3x-1\right)}{20}\)
=>30x+15-100-6x-4=24x-8
=>24x-89=24x-8
=>-89=-8(vô lý)
a: 2x+6=0
=>2x=-6
=>x=-3
b: 4x+20=0
=>4x=-20
=>x=-5
c: 2(x+1)=5x-7
=>5x-7=2x+2
=>3x=9
=>x=3
d: \(2x-3=0\)
=>2x=3
=>\(x=\dfrac{3}{2}\)
e: 3x-1=x+3
=>3x-x=3+1
=>2x=4
=>\(x=\dfrac{4}{2}=2\)
f: 15-7x=9-3x
=>-7x+3x=9-15
=>-4x=-6
=>x=1,5
g: x-3=18
=>x=18+3=21
h: 2x+1=15-5x
=>2x+5x=15-1
=>7x=14
=>\(x=\dfrac{14}{7}=2\)
i: 3x-2=2x+5
=>3x-2x=2+5
=>x=7
k: -4x+8=0
=>-4x=-8
=>\(x=\dfrac{-8}{-4}=2\)
l: 2x+3=0
=>2x=-3
=>\(x=-\dfrac{3}{2}\)
m: 4x+5=3x
=>4x-3x=-5
=>x=-5
a: |x-4|=1
=>\(\left[{}\begin{matrix}x-4=1\\x-4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Khi x=5 thì \(B=\dfrac{5+1}{5-3}=\dfrac{6}{2}=3\)
b: \(A=\dfrac{x}{x-3}-\dfrac{x+1}{x+3}+\dfrac{3x-3}{9-x^2}\)
\(=\dfrac{x}{x-3}-\dfrac{x+1}{x+3}-\dfrac{3x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-3x+3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2+3x-\left(x^2-2x-3\right)-3x+3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2+3-x^2+2x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\)
c: \(M=B:A=\dfrac{2}{x-3}:\dfrac{x}{x-3}=\dfrac{2}{x}\)
Để M=5 thì 2/x=5
=>\(x=\dfrac{2}{5}\left(nhận\right)\)
d: \(N=B-A=\dfrac{2}{x-3}-\dfrac{x}{x-3}=\dfrac{2-x}{x-3}\)
Để N là số nguyên thì \(2-x⋮x-3\)
=>\(x-2⋮x-3\)
=>\(x-3+1⋮x-3\)
=>\(1⋮x-3\)
=>\(x-3\in\left\{1;-1\right\}\)
=>\(x\in\left\{4;2\right\}\)
Bài 19:
Gọi số sản phẩm tổ 1 làm được trong tháng đầu là x(sản phẩm)
(Điều kiện: \(x\in Z^+\))
Số sản phẩm tổ 2 làm được trong tháng đầu là:
800-x(sản phẩm)
Số sản phẩm tổ 1 làm đươc trong tháng hai là:
\(\left(1+15\%\right)\cdot x=1,15x\left(sảnphẩm\right)\)
Số sản phẩm tổ 2 làm được trong tháng hai là:
\(\left(1+20\%\right)\left(800-x\right)=1,2\left(800-x\right)\left(sảnphẩm\right)\)
Tổng số sản phẩm hai tổ làm được trong tháng hai là 945 sản phẩm nên ta có:
1,15x+1,2(800-x)=945
=>1,15x+960-1,2x=945
=>-0,05x=-15
=>x=300(nhận)
Vậy: Trong tháng đầu, tổ 1 làm được 300 sản phẩm, tổ 2 làm được 800-300=500 sản phẩm
a: PA là đường cao ứng với đỉnh P của ΔMNP
=>PA\(\perp\)MN
b: Xét ΔMIN vuông tại I và ΔMAP vuông tại A có
\(\widehat{IMN}\) chung
Do đó: ΔMIN~ΔMAP
c: Xét ΔPIN vuông tại I và ΔPKM vuông tại K có
\(\widehat{IPN}\) chung
Do đó: ΔPIN~ΔPKM
=>\(\dfrac{PI}{PK}=\dfrac{PN}{PM}\)
=>\(\dfrac{PI}{PN}=\dfrac{PK}{PM}\)
Xét ΔPIK và ΔPNM có
\(\dfrac{PI}{PN}=\dfrac{PK}{PM}\)
\(\widehat{IPK}\) chung
Do đó: ΔPIK~ΔPNM
=>\(\widehat{PIK}=\widehat{PNM}\)
d: Xét ΔMIH vuông tại I và ΔMKP vuông tại K có
\(\widehat{IMH}\) chung
Do đó: ΔMIH~ΔMKP
=>\(\dfrac{MI}{MK}=\dfrac{MH}{MP}\)
=>\(MI\cdot MP=MH\cdot MK\)
e: \(\dfrac{PI}{PN}=\dfrac{PK}{PM}\)
=>\(PI\cdot PM=PK\cdot PN\)
\(MH\cdot MK+PK\cdot PN=PI\cdot PM+MI\cdot MP\)
\(=MP\left(PI+MI\right)=MP^2\)
Thay x=-1 và y=2 vào y=(3-2m)x+1, ta được:
-(3-2m)+1=2
=>-3+2m=1
=>2m=4
=>m=2
\(\dfrac{x+1}{2024}+\dfrac{x+2}{2023}=\dfrac{x+3}{2022}+\dfrac{x+4}{2021}\)
=>\(\left(\dfrac{x+1}{2024}+1\right)+\left(\dfrac{x+2}{2023}+1\right)=\left(\dfrac{x+3}{2022}+1\right)+\left(\dfrac{x+4}{2021}+1\right)\)
=>\(\dfrac{x+2025}{2024}+\dfrac{x+2025}{2023}=\dfrac{x+2025}{2022}+\dfrac{x+2025}{2021}\)
=>\(\left(x+2025\right)\left(\dfrac{1}{2024}+\dfrac{1}{2023}-\dfrac{1}{2022}-\dfrac{1}{2021}\right)=0\)
=>x+2025=0
=>x=-2025