K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

Gọi 2 c số t nhiên đó là a, b (đk)

 tổng các bình phương của hai chữ số bằng 50 ...=> a2+b2=5a2+b2=50  (*)

và nếu đổi chỗ hai chữ số cho nhau thì ta được một số mới lớn hơn số ban đầu 54 đơn vị => ba-ab=54

                                                                                                                                     <=> b-a=4=> a+4=b

Thay vào giải ra vô nghiệm

10 tháng 5 2021
2 cái pt riêng nhà mng
10 tháng 5 2021

:v câu nào 

11 tháng 5 2021

Câu 15 : 

a, \(\left(x-1\right)\left(x+2\right)+2=0\Leftrightarrow x^2+x=0\Leftrightarrow x=-1;x=0\)

b, \(x^2-\left(1+\sqrt{2}\right)x+\sqrt{2}=0\)

\(\Leftrightarrow x^2-x-\sqrt{2}x+\sqrt{2}=0\Leftrightarrow x\left(x-1\right)-\sqrt{2}\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x-1\right)=0\Leftrightarrow x=1;x=\sqrt{2}\)

Bài 16 : Hoành độ giao điểm thỏa mãn pt : \(x^2=2x+3\Leftrightarrow x=3;x=-1\)

TH1 : Thay x = 3 vào y = x^2 => \(y=9\)

TH2 : Thay x = -1 vào y = x^2 => \(y=1\)

Vậy tọa độ probol (P) và (d) là A(3;9) ; B(-1;1) 

Em ko chắc :> em nghĩ cách làm giống đồ thị hs thôiii

10 tháng 5 2021

a) Ta có: Điểm K đối xứng với điểm F qua AC => FC=KC;  AF=AK 

=> ΔACF=ΔACK (c.c.c) => ^AFC=^AKC (2 góc tương ứng) 

Ta thấy tứ giác ABFC nội tiếp đường tròn tâm O => ^AFC=^ABC.

H là trực tâm của tam giác ABC => CH⊥AB (tại D)

=> ^HCB + ^ABC = 90 (1)

 Lại có AH⊥⊥BC => ^LHC + ^HCB = 90 (2)

Từ (1) và (2) => ^ABC=^LHC. Mà ^LHC + ^AHC = 180

=> ^ABC + ^AHC = 180. Do ^ABC=^AFC=^AKC (cmt) => ^AKC + ^AHC= 180

Xét tứ giác AHCK có: ^AKC + ^AHC =180 => Tứ giác AHCK nội tiếp đường tròn (đpcm).

b) AO cắt GI tại Q

Gọi giao điểm của AO và (O) là P = >^ACP=90 => ^CAP+^CPA=90 (*)

Thấy tứ giác ACPB nội tiếp đường tròn (O) => ^CPA=^ABC 

Mà ^ABC+^AHC=180=> ^CPA+^AHC=180 (3).

Ta có tứ giác AHCK là tứ giác nội tiếp (cmt) => ^KAI=^CHI

Lại có ΔACF=ΔACK => ^FAC=^KAC hay ^KAI=^GAI  => ^GAI=^CHI

Xét tứ giác AHGI: ^GAI=^GHI (=^CHI) (cmt) = >Tứ giác AHGI nội tiếp đường tròn

=> ^AIG+^AHG=180 hay ^AIG + ^AHC=180 (4)

Từ (3) và (4) => ^AIG=^CPA (*)

Từ (*) và (**) => ^CAP+^AIG=900hay ^IAQ+^AIQ=900 => ΔAIQ vuông tại Q

Vậy AO vuông góc với GI (đpcm).

10 tháng 5 2021

Sai đề kìa

11 tháng 5 2021

\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\left(đkxđ:x\ge\frac{3}{2}\right)\)

\(< =>\sqrt{2x-3}=2\sqrt{x-1}\)

\(< =>\sqrt{2x-3}-2\sqrt{x-1}=0\)

\(< =>\frac{2x-3-4x+4}{\sqrt{2x-3}+2\sqrt{x-1}}=0\)

\(< =>\frac{1-2x}{\sqrt{2x-3}+2\sqrt{x-1}}=0\)

\(< =>x=\frac{1}{2}\)(ktm)

vậy ...

9 tháng 5 2021

(1) <=> \(\frac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)

(2) \(\Leftrightarrow\sqrt{2x-3}=2\sqrt{x-1}\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)

đkxđ của (2) : \(x\ge\frac{3}{2}\) => (2) vô nghiệm

11 tháng 5 2021

( 1 số phần cơ bản sẽ làm tắt nha, cái đấy bạn sẽ tự trình bày rõ nhá, nhất là chứng minh tứ giác nội tiếp sẽ rút ngắn lại )

a)\(\widehat{ABO}=\widehat{AEO}=90^0\)

\(\Rightarrow ABEO\)nội tiếp

=> A,B,E,O thuộc 1 đường tròn

b) Xét tam giác AMC và tam giác ACN có:

\(\hept{\begin{cases}\widehat{NAC}chung\\\widehat{ACM}=\widehat{ANC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\end{cases}\Rightarrow\Delta AMC~\Delta ACN\left(g-g\right)}\)

\(\Rightarrow\frac{AM}{AC}=\frac{AC}{AN}\)

\(\Rightarrow AC^2=AM.AN\)

c) \(\widehat{MJC}+\widehat{MFC}=180^0\)

\(\Rightarrow MJCF\)nội tiếp

\(\Rightarrow\widehat{MFJ}=\widehat{MCJ}\)

Mà \(\widehat{MCJ}=\widehat{MBC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\)

\(\Rightarrow\widehat{MFJ}=\widehat{MBC}\left(1\right)\)

CMTT \(\widehat{MFI}=\widehat{MCB}\left(2\right)\)

Xét tam giác MBC có: \(\widehat{CMB}+\widehat{MCB}+\widehat{MBC}=180^0\left(3\right)\)

Từ (1), (2) và (3) \(\Rightarrow\widehat{CMB}+\widehat{MFJ}+\widehat{MFI}=180^0\)

\(\Rightarrow\widehat{CMB}+\widehat{PFQ}=180^0\)

\(\Rightarrow MPFQ\)nội tiếp

\(\Rightarrow\widehat{MPQ}=\widehat{MFQ}\)mà \(\widehat{MFQ}=\widehat{MBC}\left(cmt\right)\)

\(\Rightarrow\widehat{MPQ}=\widehat{MBC}\)mà 2 góc này ở vị trí đồng vị

\(\Rightarrow PQ//BC\)

d)  Xét tam giác MIF và tam giác MFJ có:

\(\hept{\begin{cases}\widehat{MIF}=\widehat{MFJ}\left(=\widehat{MBF}\right)\\\widehat{MJF}=\widehat{MFI}\left(=\widehat{MCF}\right)\end{cases}\Rightarrow\Delta MIF~\Delta MFJ\left(g-g\right)}\)

\(\Rightarrow\frac{MI}{MF}=\frac{MF}{MJ}\)

\(\Rightarrow MI.MJ=MF^2\)

MI.MJ lớn nhất \(\Leftrightarrow MF^2\)lớn nhất

Mà \(MF=\frac{1}{2}MN\)

\(\Rightarrow MF^2=\frac{1}{4}MN^2\)

\(\Rightarrow MF\)lớn nhất <=> MN lớn nhất \(\Leftrightarrow MN\)là đường kính (O)

\(\Leftrightarrow M\)là điểm chính giữa cung BC

Vậy MI.MJ lớn nhất <=> M là điểm chính giữa cung BC.

( KO hiểu thì hỏi mình nha )

25 tháng 4 2023

tại sao MF=1/2MN ?

 

10 tháng 5 2021

a. Xét (o) , có: 
\(AB\perp CD=\left\{O\right\}\)

=> \(\widehat{COB}=\widehat{COA=}90^o\)

Mà \(M\in CD\)

=> \(\widehat{MOB}=\widehat{MOA}=90^o\)

Ta có: \(\widehat{ANB}\)là góc nội tiếp chắn nửa đường tròn đường kính AB
=> \(\widehat{ANB}=90^o\)

Xét tứ giác AOMN, có:

\(\widehat{ANB+}\widehat{MOA}=90^o+90^o=180^o\)

\(\widehat{ANB}\)và \(\widehat{MOA}\)là 2 góc đối nhau

=> AOMN là tứ giác nội tiếp (dhnb) (đpcm)

9 tháng 5 2021

\(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-\sqrt{8}+\frac{\sqrt{x^2}.\sqrt{x+2}}{\sqrt{x+2}}=4x-\sqrt{8}+|x|\)

có còn rút gọn đc nữa không nhỉ

9 tháng 5 2021

Thanks Nghĩa nha, làm như thế là được rồi^^