500000000=5988888
giải thik nha
kb nếu mùn d tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(x_0\) là hoành độ của điểm thuộc (C) mà tại đó tiếp xuyến của (C) song song với (d)
Ta có \(y'\left(x_0\right)=\frac{3}{\left(x_0+2\right)^2}\), hệ số góc của \(\left(d\right):3x-y+15=0\) là 3
Suy ra \(\frac{3}{\left(x_0+2\right)^2}=3\Leftrightarrow\orbr{\begin{cases}x_0+2=1\\x_0+2=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x_0=-1\\x_0=-3\end{cases}}\)
Hai điểm cần tìm là \(A\left(-1;-2\right),B\left(-3;4\right)\). Vậy \(S=-2+4=2.\)
\(\sin3x+\sqrt{3}\cos3x=2\sin2x\)
<=> \(\frac{1}{2}.sin3x+\frac{\sqrt{3}}{2}.cos3x=sin2x\)
<=> \(sin\left(3x+\frac{\pi}{3}\right)=sin2x\)
<=> \(\orbr{\begin{cases}3x+\frac{\pi}{3}=2x+k2\pi\\3x+\frac{\pi}{3}=\pi-2x+k2\pi\end{cases}}\) \(k\inℤ\)
<=> \(\orbr{\begin{cases}x=-\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{15}+\frac{k2\pi}{5}\end{cases}}\)
a) Hình chóp đều S.ABCD có O là tâm đáy, suy ra \(SO\perp\left(ABCD\right)\Rightarrow CB\perp SO\)
Hình vuông ABCD có I,J lần lượt là trung điểm BC,AD, suy ra \(CB\perp IJ\)
Vậy \(CB\perp\left(SIJ\right)\)hay \(\left(SBC\right)\perp\left(SIJ\right).\)
b) Ta có: \(OC=\frac{CD}{\sqrt{2}}=a;SC=2a\Rightarrow\frac{OC}{SC}=\frac{1}{2}\)
\(\hept{\begin{cases}SO\perp\left(ABCD\right)\\C\in\left(ABCD\right)\end{cases}}\Rightarrow\left(SC,ABCD\right)=\widehat{SCO}=arc\cos\left(\frac{OC}{SC}\right)=60^0\)(Vì \(\widehat{SCO}< 90^0\))
b) Lấy H thuộc SI sao cho JH vuông góc SI
\(\hept{\begin{cases}AD||BC\\BC\subset\left(SBC\right)\end{cases}}\Rightarrow AD||\left(SBC\right)\)
\(\Rightarrow d\left(AD,SB\right)=d\left(AD,SBC\right)=d\left(J,SBC\right)\)
Ta thấy: SI là giao tuyến của (SIJ) và (SBC), mà \(\hept{\begin{cases}J\in\left(SIJ\right)\\JH\perp SI\end{cases}\left(H\in SI\right)}\)nên \(JH\perp\left(SBC\right)\)
Ta có \(SO=a\sqrt{3},OI=a\frac{\sqrt{2}}{2}\Rightarrow\cos\widehat{OSI}=\frac{SO}{\sqrt{SO^2+OI^2}}=\frac{\sqrt{42}}{7}\)
Suy ra \(d\left(J,SBC\right)=JH=IJ.\cos\widehat{HJI}=IJ.\cos\widehat{OSI}=\frac{\sqrt{42}a}{7}\)
Vậy \(d\left(AD,SB\right)=\frac{\sqrt{42}a}{7}.\)
Chữa câu c:
\(d\left(AD,SB\right)=JH=IJ.\cos\widehat{HJI}=a\sqrt{2}.\frac{\sqrt{42}}{7}=\frac{2\sqrt{21}a}{7}\)
Có \(cos\left(3x+\frac{\pi}{3}\right)\le1,sin\left(\frac{5\pi}{6}+3x\right)\le1\)
do đó \(cos\left(3x+\frac{\pi}{3}\right)+sin\left(3x+\frac{5\pi}{6}\right)=2\)
\(\Leftrightarrow\hept{\begin{cases}cos\left(3x+\frac{\pi}{3}\right)=1\\sin\left(\frac{5\pi}{6}+3x\right)=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+\frac{\pi}{3}=k2\pi,\left(k\inℤ\right)\\\frac{5\pi}{6}+3x=\frac{\pi}{2}+l2\pi,\left(l\inℤ\right)\end{cases}}\)
\(\Leftrightarrow x=\frac{-\pi}{9}+\frac{k2\pi}{3},\left(k\inℤ\right)\)
Trả lời :
t i c k đê
ai bt đc
~HT~
đc mk sẽ kb đợi mk tí mk gửi câu trả lời cho