K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2021

x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1

Suy ra : \(A=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+1=2x^2-1+2x-x^2+x+\frac{1}{x}+1\)

\(=x^2+3x+\frac{1}{x}=x^2-x+\frac{1}{4}+4x+\frac{1}{x}+\frac{1}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+4x+\frac{1}{x}+\frac{1}{4}\)

Mà \(4x+\frac{1}{x}\ge2\sqrt{4x.\frac{1}{x}}=2.2=4\). Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2

Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2

Vậy min\(A=4+\frac{1}{4}=\frac{17}{4}\)<=> x = y = 1/2

19 tháng 4 2021

Cách giải như sau

x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1

Suy ra : A=2x2−(1−x)2+x+1x +1=2x2−1+2x−x2+x+1x +1

=x2+3x+1x =x2−x+14 +4x+1x +14 

=(x−12 )2+4x+1x +14 

Mà 4x+1x ≥2√4x.1x =2.2=4. Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2

Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2

Vậy minA=4+14 =174 <=> x = y = 1/2

          HOK TỐT

6 tháng 4 2021

Cộng đồng Steam :: :: MUDA MUDAMUDA MUDA /ORA ORAStand Cry / MUDA MUDA MUDA / ORA ORA ORA | Ngôn ngữ | Lục Lọi Meme | Cộng đồng meme trực tuyến

7 tháng 4 2021

a) Δ = b2 - 4ac = [ -( m - 1 ) ]2 - 4( m - 2 )

= m2 - 2m + 1 - 4m + 8

= m2 - 6m + 9 = ( m - 3 )2 ≥ 0 ∀ m

hay phương trình luôn có nghiệm ∀ m ( đpcm )

b) Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m-1\\x_1x_2=\frac{c}{a}=m-2\end{cases}}\)

Khi đó 3( x1 + x2 ) = x1x2

<=> 3m - 3 = m - 2

<=> 2m = 1 <=> m = 1/2

Vậy với m = 1/2 thì phương trình có hai nghiệm x1, x2 thỏa mãn 3( x1 + x2 ) = x1x2

6 tháng 4 2021

Ta có : \(\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2}=\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel và giả thiết a2 + b2 + c2 = 3abc ta có :

\(\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{\left(3abc\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{9}{a+b+c}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c=1

6 tháng 4 2021

Ta có : \(\hept{\begin{cases}\frac{a^3}{a^2+b^2+ab}=\frac{a^4}{a\left(a^2+b^2+ab\right)}=\frac{a^4}{a^3+ab^2+a^2b}=\frac{a^4}{a^3+ab\left(a+b\right)}\\\frac{b^3}{b^2+c^2+bc}=\frac{b^4}{b\left(b^2+c^2+bc\right)}=\frac{b^4}{b^3+bc^2+b^2c}=\frac{b^4}{b^3+bc\left(b+c\right)}\\\frac{c^3}{c^2+a^2+ca}=\frac{c^4}{c\left(c^2+a^2+ca\right)}=\frac{c^4}{c^3+ca^2+c^2a}=\frac{c^4}{c^3+ca\left(c+a\right)}\end{cases}}\)

Khi đó bất đẳng thức được viết lại thành :

\(\frac{a^4}{a^3+ab\left(a+b\right)}+\frac{b^4}{b^3+bc\left(b+c\right)}+\frac{c^4}{c^3+ca\left(c+a\right)}\ge\frac{a+b+c}{3}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Dễ dàng phân tích \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=> \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

Xét bất đẳng thức phụ : 3( a2 + b2 + c2 ) ≥ ( a + b + c )2

<=> 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ca ≥ 0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )

Khi đó áp dụng vào bài toán ta có : \(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)( đpcm )

Đẳng thức xảy ra <=> a=b=c

6 tháng 4 2021

bài này mới được thầy sửa hồi chiều nè @@

Vì a,b dương => ( a + b ) ( a - b )2 \(\ge\)0 => a3 + b3 \(\ge\)ab ( a + b )

BĐT tương đương với 3a3\(\ge\)2a3 + 2ab ( a + b ) - b3 = 2a3 + 2a2b + 2ab2 - a2b - ab2 - b3 = ( a2 + ab + b3 ) ( 2a - b )

Suy ra : \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)

Chứng minh tương tự ta được : \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)

Từ (1) ; (2) và (3) => \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)(đpcm)

15 tháng 8 2021

 Điểm G cách trung điểm M của BC (cố định) một khoảng cố định bằng \dfrac{m}{3}.

Kết luận: quỹ tích trọng tâm G của tam giác ABC là đường tròn (G , \dfrac{m}{3}) trừ các giao điểm của đường tròn với BC (do G không thể thuộc BC).

17 tháng 8 2021

quỹ tích trọng tâm G của tam giác ABC là đường tròn (G , \dfrac{m}{3}) trừ các giao điểm của đường tròn với BC (do G không thể thuộc BC).

15 tháng 8 2021

Cần tìm điểm cố định sao cho C cách điểm đó một khoảng cố định.

Dựng điểm D đối xứng với B qua A, khi đó D là điểm cố định, AM là đường trung bình của tam giác BCD, CD = 2AM = 2m (cố định)

Kết luận: Quỹ tích điểm C là đường tròn (D ; 2m), trừ các giao điểm của nó với đường thẳng AB (khi đó tam giác ABC trở thành đoạn thẳng)

17 tháng 8 2021

Dựng điểm D đối xứng với B qua A, khi đó D là điểm cố định, AM là đường trung bình của tam giác BCD, CD = 2AM = 2m (cố định)

Quỹ tích điểm C là đường tròn (D ; 2m), trừ các giao điểm của nó với đường thẳng AB (khi đó tam giác ABC trở thành đoạn thẳng)

15 tháng 8 2021

a) Chứng minh được BF = DH \Rightarrow BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).

b) Dễ thấy \Delta BEF=\Delta CFG (cgv – cgv) nên EF = FG.

Tương tự, FG = GH, GH = HE \Rightarrow EF = FG = GH = HE. Suy ra EFGH là hình vuông.

Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.

c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3.

17 tháng 8 2021

a) Chứng minh được BF = DH \Rightarrow BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).

b) Dễ thấy \Delta BEF=\Delta CFG (cgv – cgv) nên EF = FG.

Tương tự, FG = GH, GH = HE \Rightarrow EF = FG = GH = HE. Suy ra EFGH là hình vuông.

Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.

c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3.