Cho tam giác ABC,ta có các bất đẳng thức
AB+BC lớn hơn AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a, bạn tự làm
b, \(B=\dfrac{5^2}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\)
\(=5\left(1-\dfrac{1}{106}\right)=\dfrac{5.105}{106}=\dfrac{525}{106}\)
c, đk : \(x\ne\dfrac{2}{3}\)
Ta có : \(\left|x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)(tm)
Với x = 3 suy ra \(C=\dfrac{2.9+9-1}{3.3-2}=\dfrac{26}{7}\)
Với x = -1 suy ra \(C=\dfrac{2-3-1}{-3-2}=\dfrac{-2}{-5}=\dfrac{2}{5}\)
\(2\left(n+1\right)-5⋮n-1\Leftrightarrow-5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Ta có: 2n-3=2n+2-5=2(n+1)-5 vậy (2n-3)⋮(n+1)⇔5⋮ (n+1)⇔n+1 ϵ Ư(5)⇔n+1 ϵ { -5; -1; 1;5} ⇔ n ϵ {-6; -2; 0; 4}
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{x+y+5}\)
\(=\frac{x+y+z}{y+z-2+x+z-3+x+y+5}\)
\(=\frac{x+y+z}{2x+2y+2z}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}\)
\(=\frac{1}{2}\)
TH1: \(x+y+z=0\)
Bài toán trở thành:
\(\frac{x}{-x-2}=\frac{y}{-y-3}=\frac{z}{-z+5}=0\)
\(\Leftrightarrow x=y=z=0\).
TH2: \(x+y+z\ne0\):
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{x+y+5}=\frac{x+y+z}{y+z-2+x+z-3+x+y+5}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}=x+y+z\).
Ta có hệ:
\(\hept{\begin{cases}x+y+z=\frac{1}{2}\\2x=y+z-2\\2y=x+z-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{5}{6}\\z=\frac{11}{6}\end{cases}}\)