cho tam giác abc.gọi m là trung điểm của b ,qua m kẻ đường thẳng song song với bc .chungứ minh n là trung điểm của ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ thấy vế trái luôn>0 nên 6x>0=> x>0
x>0, bỏ dấu trị tuyệt đối ra ta đc 4x+10=6x
x=5
chúc bạn học giỏi, ăn Tết đc ngon, hehe -_-
HYC-30/1/2022
Answer:
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=6x\)
Có \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+1+x+2+x+3+x+4=6x\)
\(\Rightarrow4x+10=6x\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=5\)
Answer:
\(A=2\left|3x-2\right|-1\)
Có: \(\left|3x-2\right|\ge0\forall x\)
\(\Rightarrow2\left|3x-2\right|\ge0\forall x\)
\(\Rightarrow2\left|3x-2\right|-1\le-1\forall x\)
Dấu "=" xảy ra khi: \(3x-2=0\Rightarrow3x=2\Rightarrow x=\frac{2}{3}\)
\(C=\left(x-1\right)^2+\left(y+2\right)^2\)
Có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x;y}\)
\(\Rightarrow C_{min}=0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
\(D=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\ge6\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-2\ge0\\x-8\ge0\end{cases}}\Rightarrow2\le x\le8\)
\(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=0,x=2\end{cases}}\)
a, Vì tam giác ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) \(\left(1\right)\)
Vì AB = AC , BC = CE
=> AB + BD = AC + CE
=> AD = AE
=> tam giác ADE cân tại A.
=> \(\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)ta suy ra: \(\widehat{ABC}=\widehat{ADE}\)
mà hai góc này ở vị trí đồng vị nên \(DE\text{//}BC\)
b, Vì tam giác ABC nên \(\widehat{ABC}=\widehat{ACB}\)
Ta có: \(\widehat{ABC}=\widehat{DBM}\) ( đối đỉnh )
\(\widehat{ACB}=\widehat{ECN}\) ( đối đỉnh )
mà \(\widehat{ABC}=\widehat{ACB}\)nên \(\widehat{DBM}=\widehat{ECN}\)
Xét tam giác BDM vuông tại M và tam giác CEN vuông tại N, có:
BD = CE ( gt)
\(\widehat{DBM}=\widehat{ECN}\)
=> Tam giác BDM = Tam giác CEN ( cạnh huyền - góc nhọn )
=> DM = EN ( 2 cạnh tương ứng )
c, Vì Tam giác BDM = Tam giác CEN nên BM = CN
Ta có: \(\widehat{ABC}+\widehat{ABM}=180^o\) ( kề bù )
\(\widehat{ACB}+\widehat{ACN}=180^o\)( kề bù )
mà \(\widehat{ABC}=\widehat{ACB}\)nên \(\widehat{ABM}=\widehat{ACN}\)
Xét tam giác ABM và tam giác ACN, có:
AB = AC (gt)
\(\widehat{ABM}=\widehat{ACN}\)
BM = CN (cmt)
=> Tam giác ABM = Tam giác ACN ( c-g-c)
=> \(\widehat{AMB}=\widehat{ANC}\)
=> Tam giác AMN cân tại A.