phân tích thành nhân tử (dùng hằng đẳng thức)
a) x^6+1
b)x^6-y^6
c)x^9+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = (2x-1)3 -2x(2x-3)(2x+3) + 13x(x-1)
D= (2x)3 - 3. (2x)2 .1 + 3.2x .12 -13 - 2x(2x-3)(2x+3) + 13x(x-1)
D= 8x3 - 12x2 + 6x -1 - 2x(4x2 -9) + 13x2 -13x
D= 8x3 -12x2 + 6x-1 - 8x3 + 18x + 13x2 -13x
D= (8x3 - 8x3) -(12x2 -13x2) + (6x + 18x -13x) - 1
D= x2 + 11x -1
D = x2 + 2x . 11/2 +(11/2)2 -125/4
D= (x+ 11/2)2 - 125/4
Với mọi x thì (x+11/2)2 >= 0
=> (x+11/2)2 - 125/4 >= -125/4
Dấu bằng xảy ra khi: (x+11/2)2 =0
=> x + 11/2 =0
=> x= -11/2
Vậy giá trị nhỏ nhất của D là -125/4 khi x= -11/2
c) (xy^2+1)^2
d) (1/3-y^4)^2
e) (1/2a-2b^2)^2
f) (5-x)^2
a, \(\frac{1}{25}x^2-\frac{1}{9}y^2=\left(\frac{1}{5}x\right)^2-\left(\frac{1}{3}y\right)^2=\left(\frac{1}{5}x-\frac{1}{3}y\right)\left(\frac{1}{5}x+\frac{1}{3}y\right)\)
b, \(-\left(4x^2-20x+25\right)=-\left[\left(2x\right)^2-2.2x.5+5^2\right]=-\left(2x-5\right)^2\)
d, \(x^4-4x^2+4=\left(x^2-2\right)^2\)
e, \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)
3x3 + 10x2 + 2 = 3x3 + x2 + 9x2 + 3x - 3x - 1 + 3
= x2( 3x + 1 ) + 3x( 3x + 1 ) - ( 3x + 1 ) + 3
= ( 3x + 1 )( x2 + 3x - 1 ) + 3
Vì ( 3x + 1 )( x2 + 3x - 1 ) ⋮ ( 3x + 1 )
=> 3 ⋮ ( 3x + 1 ) <=> ( 3x + 1 ) ∈ Ư(3) ( đến đây bạn tự xét giá trị nhé )
Trả lời:
a, \(x^2=6x\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
Vậy x = 0; x = 6 là nghiệm của pt.
b, \(x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}}\)
Vậy x = 1; x = 3 là nghiệm của pt.
Bài 3:
a) \(x^2=6x\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
Vậy \(S=\left\{0;6\right\}\)
b) \(x^2-4x+3=0\)
\(\Leftrightarrow x^2-4x+4-1=0\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy \(S=\left\{3;1\right\}\)
1) =\(x^7-x+x^2+x\)+1
=\(x\left(x^6-1\right)+\left(x^2+x+1\right)\)
=\(x\left(x^3-1\right)\left(x^3+1\right)\)\(+\left(x^2+x+1\right)\)
=x(x^3+1)(x-1)(x^2+x+1)+(x^2+x+1)
=[(x^4+x)(x-1)+1](x^2+x+1)
=(x^5-x^4+x^2-x)(x^2+x+1)
Trả lời:
1, x7 + x2 + 1
= x7 + x2 + 1 + x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x
= ( x7 + x6 + x5 ) - ( x6 + x5 + x4 ) + ( x4 + x3 + x2 ) - ( x3 + x2 + x ) + ( x2 + x + 1 )
= x5 ( x2 + x + 1 ) - x4 ( x2 + x + 1 ) + x2 ( x2 + x + 1 ) - x ( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x5 - x4 + x2 - x + 1 )
b, x8 + x7 + 1
= x8 + x7 + 1 + x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x
= ( x8 + x7 + x6 ) - ( x6 + x5 + x4 ) + ( x5 + x4 + x3 ) - ( x3 + x2 + x ) + ( x2 + x + 1 )
= x6 ( x2 + x + 1 ) - x4 ( x2 + x + 1 ) + x3 ( x2 + x + 1 ) - x ( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )
Trả lời:
a, 3x2y - 6xy = 3xy ( x - 2 )
b, x2 - y2 - 9x + 9y
= ( x2 - y2 ) - ( 9x - 9y )
= ( x - y )( x + y ) - 9 ( x - y )
= ( x - y )( x + y - 9 )
c, x3 - 6x2 - y2x + 9x
= x ( x2 - 6x - y2 + 9 )
= x [ ( x2 - 6x + 9 ) - y2 ]
= x [ ( x - 3 )2 - y2 ]
= x ( x - 3 - y )( x - 3 + y )
3x2y - 6xy = 3xy( x - 2 )
x2 - y2 - 9x + 9y = ( x - y )( x + y ) - 9( x - y ) = ( x - y )( x + y - 9 )
x3 - 6x2 - y2x + 9x = x( x2 - 6x - y2 + 9 ) = x[ ( x - 3 )2 - y2 ] = x( x - y - 3 )( x + y - 3 )
a) x6 + 1
= (x2)3 + 13
=(x2 +1)(x4 - x2 + 1)
b) x6 - y6
= (x2)3 - (y2)3
=(x2 -y2)(x4 + x2y2 + y4)
= (x-y)(x+y)[ x4 + 2.x2y2 + y4 - x2y2 ]
=(x-y)(x+y) [(x2 +y2)2 - (xy)2 ]
=(x-y)(x+y)(x2 - xy + y2)(x2 + xy + y2)
c) x9 +1
= (x3)3 + 13
=(x3 +1)(x6 - x3 -1)
= (x+1)(x2 - x +1)(x6 - x3-1)