Bài 3. (1,5 điểm) Cho đường thẳng $y=a x+b$. Tìm $a, \, b$ biết rằng:
a) Đường thẳng $y=a x+b$ đi qua $F(1 ; 2)$ và song song với đường thẳng $y=3 x-7$.
b) Đường thẳng $y=a x+b$ đi qua điểm $A(-2 ; 5)$ và đi qua giao điểm của hai đường thẩng $\left(d_1\right): \, y=2 x-7 ; \, \left(d_2\right): \, y=-3 x+3$.
a: Vì đường thẳng y=ax+b song song với đường thẳng y=3x-7 nên \(\left\{{}\begin{matrix}a=3\\b\ne-7\end{matrix}\right.\)
=>y=3x+b
Thay x=1 và y=2 vào y=3x+b, ta được:
\(b+3\cdot1=2\)
=>b+3=2
=>b=-1
Vậy: y=3x-1
b: Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x-7=-3x+3\\y=2x-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=10\\y=2x-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\cdot2-7=-3\end{matrix}\right.\)
Thay x=2 và y=-3 vào y=ax+b, ta được:
\(a\cdot2+b=-3\)
=>2a+b=-3(1)
Thay x=-2 và y=5 vào y=ax+b, ta được:
\(a\cdot\left(-2\right)+b=5\)
=>-2a+b=5(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=-3\\-2a+b=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a+b-2a+b=-3+5\\2a+b=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2b=2\\2a=-3-b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\2a=-3-1=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)