Chứng minh rằng nếu n là số tự nhiên thoả mãn : n+1 và 2n+1 đều là số chính phương thì n chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh của trường là x(bạn)
(Điều kiện: \(x\in Z^+\))
Số học sinh chia 13 dư 4 nên \(x-4\in B\left(13\right)\)
Số học sinh chia 17 dư 9 nên \(x-9\in B\left(17\right)\)
Số học sinh chia 5 thì vừa đủ nên \(x\in B\left(5\right)\)
mà 2500<=x<=3000
nên ta có: \(\left\{{}\begin{matrix}x-4\in B\left(13\right)\\x-9\in B\left(17\right)\\x\in B\left(5\right)\\2500< =x< =3000\end{matrix}\right.\)
=>x=2695(nhận)
Vậy: Trường đó là 2695 bạn
30% của 1số là `729 `. Số đó là: `729 : 30% = 2430`
18% của 1 số là `2,7 `. Số đó là: `2,7 : 18% = 15`
5/9 của 1 số là `45 `. Số đó là: `45 : 5/9 = 81`
\(A=\left(x+2y\right)^2+\left(2x-y\right)^2-5\left(x+y\right)\left(x-y\right)-10\left(y+3\right)\left(y-3\right)\)
\(=x^2+4xy+4y^2+4x^2-4xy+y^2-5\left(x^2-y^2\right)-10\left(y^2-9\right)\)
\(=5x^2+5y^2-5x^2+5y^2-10y^2+90\)
=90
=>A không phụ thuộc vào biến
Gọi số viết được có dạng là \(\overline{abcd}\)
a có 4 cách chọn
b có 4 cách chọn
c có 4 cách chọn
d có 4 cách chọn
Do đó: Số số viết được là \(4\cdot4\cdot4\cdot4=4^4\left(số\right)\)
Đến trạm dừng nghỉ thì Mai đã đi được bao nhiêu quãng đường vậy em?
0,03(\(x-1\)) = 2,5
\(x\) - 1 = 2,5 : 0,03
\(x-1\) = \(\dfrac{250}{3}\)
\(x\) = \(\dfrac{250}{3}\) + 1
\(x\) = \(\dfrac{253}{3}\)
Vậy \(x=\dfrac{253}{3}\)
`(x-3)(1-x)=0`
TH1: `x-3=0`
`=>x=3`
TH2: `1-x=0`
`=>-x=-1`
`=>x=1`
Vậy:` x = 3 `và `x = 1`
(\(x-3\))(1 - \(x\)) = 0
\(\left[{}\begin{matrix}x-3=0\\1-x=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy \(x\in\) {1; 3}