Rút gọn biểu thức A = \(\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt M = x2 - 4xy + 5y2 + 10x - 22y + 28
= (x2 - 4xy + 4y2) + (10x - 20y) + 25 + (y2 - 2y + 1) + 2
= (x - 2y)2 + 10(x - 2y) + 25 + (y - 1)2 + 2
= (x - 2y + 5)2 + (y - 1)2 + 2 \(\ge2\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy Min M = 2 <=> x = -3 ; y = 1
\(x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+25+1\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+\left(y-1\right)^2+25+1\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x,y\)
Dấu "=" xảy ra khi \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(Min_A=2\Leftrightarrow x=3;y=1\)
ĐK: \(x\ne-2\)
Với x=0 không phải nghiệm của pt trên
Với \(x\ne0\)pt trên trở thành:
\(\frac{1}{x+\frac{4}{x}+4}+\frac{5}{x+\frac{4}{x}}=-2\) (*)
Đặt \(y=x+\frac{4}{x}+2\) pt trở thành \(\frac{1}{y+2}+\frac{5}{y-2}=-2\)
ĐK: \(y\ne\pm2\)
pt trở thành: \(y^2+3y=0\Leftrightarrow y\left(y+3\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-3\end{cases}}\)
+ Với y=0 thì \(x+\frac{4}{x}+2=0\Rightarrow x^2+2x+4=0\Rightarrow\left(x+1\right)^2+3=0\)( vn)
+ Với y=-3 thì \(x+\frac{4}{x}+2=-3\Rightarrow x^2+5x+4=0\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)( tmđk)
Vậy nghiệm của pt là x=-1; x=-4
\(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}=-2\left(1\right)\)
\(ĐKXĐ:x\ne-2\)
\(\left(1\right)\Leftrightarrow\left(\frac{x}{x^2+4x+4}+1\right)+\left(\frac{5x}{x^2+4}+1\right)=0\)
\(\Leftrightarrow\frac{x^2+5x+4}{x^2+4x+4}+\frac{x^2+5x+4}{x^2+4}=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(\frac{1}{x^2+4x+4}+\frac{1}{x^2+4}\right)=0\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow x^2+x+4x+4=0\)
\(\Leftrightarrow x\left(x+1\right)+4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\x=-4\end{cases}\left(tmđkxd\right)}}\)
( 7x + 2y )2 + ( 7x - 2y )2 - 2( 49x2 - 4y2 )
= ( 7x + 2y )2 + ( 7x - 2y )2 - 2( 7x - 2y )( 7x + 2y )
= [ ( 7x + 2y ) - ( 7x - 2y ) ]2
= ( 7x + 2y - 7x + 2y )2
= ( 4y )2 = 16y2
\(=\left(7x+2y\right)^2+\left(7x-2y\right)^2-2\left(7x-2y\right)\left(7x+2y\right)\)
\(=\left(7x+2y-7x+2y\right)^2\)
\(=\left(4y\right)^2=16y^2\)
(x - 4)(x + 1) - (x2 - 8x + 16) = 0
<=> (x - 4)(x + 1) - (x - 4)2 = 0
<=> (x - 4)(x + 1 - x + 4) = 0
<=> (x - 4).5 = 0
<=> x - 4 = 0
<=> x = 4
\(\left(x-4\right)\left(x+1\right)-\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+1\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+1-x+4\right)=0\)
\(\Leftrightarrow5\left(x-4\right)=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
Với \(x\ne\pm3\)ta có : \(A=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x+3\right)\left(x-4\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{x+2}{x+3}\)
\(=\frac{x^2-x-12-\left(x^2-4x+3\right)+21}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}\)
\(=\frac{3\left(x+2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}=\frac{3}{x-3}\)
\(A=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right)\div\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{x-4}{x-3}-\frac{x-1}{x+3}\right)\div\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right)\div\left(\frac{x+3}{x+3}-\frac{1}{x+3}\right)\)
\(=\left(\frac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}\right)\div\left(\frac{x+3-1}{x+3}\right)\)
\(=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}\div\frac{x+2}{x+3}\)
\(=\frac{3\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\div\frac{x+2}{x+3}\)
\(=\frac{3\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\times\frac{x+3}{x+2}\)
\(=\frac{3\left(x+2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}=\frac{3}{x-3}\)