tính gt của bt \(a^4+b^4+c^4+\frac{1}{4}\)
biết a + b +c = 0 và \(a^2+b^2+c^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x+1}{x-2}+\frac{x-1}{x+2}+\frac{x^2+4x}{4-x^2}\)
a) \(=\frac{x+1}{x-2}+\frac{x-1}{x+2}-\frac{x^2+4x}{x^2-4}\)
\(=\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+3x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2-3x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+3x+2+x^2-3x+2-x^2-4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
b) Tại x = 4 thỏa mãn x ≠ ±2 => A = 1/3
c) Ta có \(A=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)
Để A nhận giá trị nguyên dương thì \(\frac{4}{x+2}\)nguyên
=> 4 chia hết cho x+2
=> x + 2 thuộc Ư(4) = { ±1 ; ±2 ; ±4 }
x+2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
Rồi bạn thử từng cái vô xem cái nào làm cho A dương thì lấy
( 6x3 + 15x2 - 4x - 10 ) : ( 3x2 - 2 )
= [ ( 6x3 - 4x ) + ( 15x2 - 10 ) ] : ( 3x2 - 2 )
= [ 2x( 3x2 - 2 ) + 5( 3x2 - 2 ) ] : ( 3x2 - 2 )
= ( 3x2 - 2 )( 2x + 5 ) : ( 3x2 - 2 )
= 2x + 5