Cho hàm số y=\(\frac{1}{4}x^2\)
Tìm m để đường thẳng (d): y=x+m chỉ có 1 điểm chung với (P). Xác định tọa độ của điểm chung này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức Vi-ét,ta có :
\(\hept{\begin{cases}x_1+x_2=\frac{m-1}{1}=m-1\\x_1x_2=\frac{2m-6}{1}=2m-6\end{cases}}\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{5}{2}\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{5}{2}\)
\(\Leftrightarrow\frac{\left(m-1\right)^2-2\left(2m-6\right)}{2m-6}=\frac{m^2-6m+13}{2m-6}=\frac{5}{2}\)
\(\Leftrightarrow2m^2-12m+26=10m-30\Leftrightarrow2m^2-22m+56=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=4\\m=7\end{cases}}\)
Vây .....
ĐK: \(x-\frac{1}{x}\ge0;1-\frac{1}{x}\ge0\)
\(x=\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\)(1)
<=> \(x-\sqrt{1-\frac{1}{x}}=\sqrt{x-\frac{1}{x}}\)
=> \(x^2-2x\sqrt{1-\frac{1}{x}}+1-\frac{1}{x}=x-\frac{1}{x}\)
<=> \(x^2-2\sqrt{x^2-x}+1-x=0\)( vì (1) => x \(\ge\)0 )
<=> \(\left(x^2-x\right)-2\sqrt{x^2-x}+1=0\)
<=> \(\left(\sqrt{x^2-x}-1\right)^2=0\)
<=> \(\sqrt{x^2-x}=1\)
<=> \(x^2-x-1=0\)
<=> \(\orbr{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{cases}}\)
Thử lại ta có: \(x=\frac{1+\sqrt{5}}{2}\) thỏa mãn bài toán
Vậy:
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)
\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)
<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)
<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)
<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)
<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)
<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)
<=> \(x-3y-3=0\)
vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)
<=> x = 3y + 3
Thế vào phương trình trên ta có:
\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)
<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk
Vậy hệ vô nghiệm.
Áp dụng BĐT Cauchy Schwarz dạng engel , ta có :
\(VP=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{3^2}{3+3}=\frac{3}{2}\)
Dấu = xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy \(T\)đạt giá trị nhỏ nhất là \(\frac{3}{2}\)với x = y = z = 1