Cho x, y là các số dương thỏa mãn \(x+\frac{1}{y}\le1\). Tìm GTNN của biểu thức P= \(\frac{x}{2y}+\frac{y}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y là các số dương thỏa mãn \(x+\frac{1}{y}\le1\) . Tìm GTNN của \(P=\frac{x}{2y}+\frac{y}{x}\)
Đặt: \(\frac{1}{y}=t\)> 0
Ta có: \(x+t\le1\)
\(P=\frac{xt}{2}+\frac{1}{xt}=\frac{xt}{2}+\frac{1}{32xt}+\frac{31}{32xt}\ge2\sqrt{\frac{xt}{2}.\frac{1}{32xt}}+\frac{31}{\frac{32\left(x+t\right)^2}{4}}=\frac{33}{8}\)
Dấu "=" xảy ra <=> x = t = 1/2 hay x = 1/2 và y = 2
Vậy GTNN của P = 33/8 đạt tại x =1/2 và y =2 .
Đặt: |y + 2 | = t ta có hệ:
\(\hept{\begin{cases}4x-t=3\\x+2t=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\t=1\end{cases}}\)
Với t = 1 ta có: | y + 2 | = 1 <=> y + 2 = 1 hoặc y + 2 = -1 <=> y = -1 hoặc y = - 3
Vậy hệ có hai nghiệm: ( 1; -1) hoặc (1; -3)
ĐK: \(\hept{\begin{cases}x^2-1\ge0\\x^4-x^2+1\ge0\end{cases}}\)(@@)
\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)
<=> \(3\sqrt{x^2-1}+x^2-\sqrt{x^4-x^2+1}=0\)
<=> \(3\sqrt{x^2-1}+\frac{x^4-x^4+x^2-1}{x^2+\sqrt{x^4-x^2+1}}=0\)
<=> \(3\sqrt{x^2-1}+\frac{x^2-1}{x^2+\sqrt{x^4-x^2+1}}=0\)
<=> \(\sqrt{x^2-1}\left(3+\frac{\sqrt{x^2-1}}{x^2+\sqrt{x^4-x^2+1}}\right)=0\)
<=> \(\sqrt{x^2-1}=0\)
<=> x = 1 hoặc x = -1 thỏa mãn (@@)
Kết luận:...
Không biết đề có phải như thế này không:
\(\hept{\begin{cases}\frac{x}{y}+\frac{y}{x}=2\\\left(2x-1\right)x-y\left(y-5\right)+4=0\left(1\right)\end{cases}}\)
ĐK: x; y khác 0
Ta có: \(\frac{x}{y}+\frac{y}{x}=2\)
<=> \(x^2+y^2=2xy\)
<=> \(\left(x-y\right)^2=0\)
<=> x = y
Thế vào (1) ta có phương trình: \(\left(2x-1\right)x-x\left(x-5\right)+4=0\)
<=> \(x^2+4x+4=0\)
<=> x = - 2 thỏa mãn đk
khi đó: y= x = -2
Vậy ...
tự làm là hạnh phúc của mỗi công dân.