Từ M ở ngoài đường tròn tâm (O) kẻ cát tuyến MAB , (A nằm giưa M và B) và các tiếp tuyến MC , MD gọi H là giao điểm của OM và CD
a)CM : MC2 = MA .MB
b) Chứng minh tứ giác AHOB nội tiếp .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) có góc BAM = góc MNB = 90 độ
=> tgAMNB nội tiếp ( vì tổng 2 góc đối bằng 180 độ)
b)cóa tia BM cắt (O) tại D => góc MDC = 90 độ( góc nội tiếp chắn nửa dt)
=> ABCD là tgnt (vì góc BAC và góc BDC là 2 góc nội tiếp bằng nhau cùng chắn cung BC)
c) tg ABCD nt => góc ADB= góc ACB
và tg SMCD nt dt (O) =>góc SCM= góc SDM
mà góc SDM= góc ADB
=> góc SCM= góc ACB
=> AC là pg góc SCB
d ) tg BAM vuông cân tại A => góc AMB= 45 độ => góc DMC= 45 độ ( 2 góc đối dỉnh)
=> góc MDO=góc DMC= góc ODC= góc DCO= 45 độ
=> góc DOC = 90 độ
cóa OD= OC=OM=AM=AB= 2 cm
rồi sd công thức là ra nhé !!!:)))
Có thể giải gúp tôi được không /
Con mua 17 kg cam , mẹ mua gấp 3 lần số cam của con . Hỏi cả hai mẹ con mua được bao nhiêu kg cam ?
Số tiền lãi sau 9 tháng là: 27488916 (đồng)
Số tiền lãi sau 1 tháng là: 6872229 (đồng)
Số tiền lãi sau mỗi quý là: 6872229 x 3 = 20616687 (đồng)
gọi G là giao của tia đối tia CD với AM (ta giả sử cung AC < cung BC)
ý c: từ b suy ra tam giác CDE đồng dạng CFD
=> \(\widehat{ECD}=\widehat{FCD}\)
ta có: \(\widehat{ECD}+\widehat{GCE}=180^o\)
\(\widehat{FCD}+\widehat{GCF}=180^o\)
\(\widehat{GCE}=\widehat{GCF}\)suy ra đccm
ý d: CM IK//AB
Ta có: \(\widehat{FDB}=\widehat{FCB}\)(BDCF nôi tiếp đường tròn)
\(\hept{\begin{cases}\widehat{FCB}+\widehat{FBC}=90^o\\\widehat{DCA}+\widehat{CAD}=90^o\end{cases}}\)
mà \(\widehat{CAD}=\widehat{FBC}\)(cùng chắn cung BC)
\(\Rightarrow\widehat{FCB}=\widehat{DCA}\Rightarrow\widehat{FDB}=\widehat{DCA}\)(1)
Tương tự:
\(\hept{\begin{cases}\widehat{ECA}+\widehat{EAC}=90^o\\\widehat{DCB}+\widehat{DBC}=90^o\end{cases}}\)
mà \(\widehat{EAC}=\widehat{DBC}\)(cùng chắn cung AC)
\(\Rightarrow\widehat{ECA}=\widehat{DCB}\). mà \(\widehat{ECA}=\widehat{EDA}\)(tứ giác ECDA nội tiếp nên 2 góc kia cùng chắn cung AE)
\(\Rightarrow\widehat{DCB}=\widehat{EDA}\)(2)
(1)+(2) => \(\widehat{ACD}+\widehat{BCD}=\widehat{FDB}+\widehat{EDA}\)
\(\Rightarrow\widehat{ICK}=\widehat{FDB}+\widehat{EDA}\)\(\Rightarrow\widehat{ICK}+\widehat{IDK}=\widehat{FDB}+\widehat{EDA}+\widehat{IDK}=180^o\)
suy ra tứ giác IDKC nội tiếp \(\Rightarrow\widehat{CKI}=\widehat{CDI}=\widehat{CAE}=\widehat{CBA}\)
mà góc CKI và góc CBA ở vị trí đồng vị suy ra IK//AB. ta đc đccm.
Lời giải:
a)
Xét tam giác MCAMCA và MBCMBC có:
MˆM^ chung
MCAˆ=MBCˆMCA^=MBC^ (góc tạo bởi dây cung và tiếp tuyền thì bằng góc nội tiếp chắn cung đó, cụ thể ở đây là cung ACAC)
⇒△MCA∼△MBC(g.g)⇒△MCA∼△MBC(g.g)
⇒MCMB=MAMC⇒MC2=MA.MB⇒MCMB=MAMC⇒MC2=MA.MB (đpcm)
b)
Theo tính chất tiếp tuyến cắt nhau MC=MDMC=MD
Hơn nữa OC=OD=ROC=OD=R
Do đó MOMO là đường trung trực của CDCD
⇒MO⊥CD⇒MO⊥CD tại HH
⇒MHCˆ=900⇒MHC^=900
Vì MCMC là tiếp tuyến (O)(O) nên MC⊥OC⇒MCOˆ=900MC⊥OC⇒MCO^=900
Xét tam giác MCOMCO và MHCMHC có:
MˆM^ chung
MCOˆ=MHCˆ(=900)MCO^=MHC^(=900)
⇒△MCO∼△MHC(g.g)⇒MCMH=MOMC⇒MC2=MH.MO⇒△MCO∼△MHC(g.g)⇒MCMH=MOMC⇒MC2=MH.MO
Kết hợp với kết quả phần a suy ra MH.MO=MA.MBMH.MO=MA.MB
⇒AHOB⇒AHOB là tứ giác nội tiếp.
rồi tại sao phần b có MH.MO=MA.MB