K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2020

Lời giải:

a)

Xét tam giác MCAMCA và MBCMBC có:

MˆM^ chung

MCAˆ=MBCˆMCA^=MBC^ (góc tạo bởi dây cung và tiếp tuyền thì bằng góc nội tiếp chắn cung đó, cụ thể ở đây là cung ACAC)

⇒△MCA∼△MBC(g.g)⇒△MCA∼△MBC(g.g)

⇒MCMB=MAMC⇒MC2=MA.MB⇒MCMB=MAMC⇒MC2=MA.MB (đpcm)

b)

Theo tính chất tiếp tuyến cắt nhau MC=MDMC=MD

Hơn nữa OC=OD=ROC=OD=R

Do đó MOMO là đường trung trực của CDCD

⇒MO⊥CD⇒MO⊥CD tại HH

⇒MHCˆ=900⇒MHC^=900

Vì MCMC là tiếp tuyến (O)(O) nên MC⊥OC⇒MCOˆ=900MC⊥OC⇒MCO^=900

Xét tam giác MCOMCO và MHCMHC có:

MˆM^ chung

MCOˆ=MHCˆ(=900)MCO^=MHC^(=900)

⇒△MCO∼△MHC(g.g)⇒MCMH=MOMC⇒MC2=MH.MO⇒△MCO∼△MHC(g.g)⇒MCMH=MOMC⇒MC2=MH.MO

Kết hợp với kết quả phần a suy ra MH.MO=MA.MBMH.MO=MA.MB

⇒AHOB⇒AHOB là tứ giác nội tiếp.

21 tháng 2 2021

rồi tại sao phần b có MH.MO=MA.MB

30 tháng 5 2020

đây nhé

27 tháng 7 2021

Cho mình xin lời giải với

30 tháng 5 2020

đây nha

2 tháng 7 2020

đâu bạn

29 tháng 5 2020

A B c D s O M

a) có góc BAM = góc MNB = 90 độ

=> tgAMNB nội tiếp ( vì tổng 2 góc đối bằng 180 độ)

b)cóa tia BM cắt (O) tại D => góc MDC = 90 độ( góc nội tiếp chắn nửa dt)

=> ABCD là tgnt (vì góc BAC và góc BDC là 2 góc nội tiếp bằng nhau cùng chắn cung BC)

c) tg ABCD nt => góc ADB= góc ACB

và tg SMCD nt dt (O) =>góc SCM= góc SDM

mà góc SDM= góc ADB

=> góc SCM= góc ACB

=> AC là pg góc SCB

d ) tg BAM vuông cân tại A => góc AMB= 45 độ => góc DMC= 45 độ ( 2 góc đối dỉnh)

=> góc MDO=góc DMC= góc ODC= góc DCO= 45 độ

=> góc DOC = 90 độ

cóa OD= OC=OM=AM=AB= 2 cm 

rồi sd công thức là ra nhé !!!:)))

9 tháng 6 2020

Có thể giải gúp tôi được không / 

Con mua 17 kg cam , mẹ mua gấp 3 lần số cam của con . Hỏi cả hai mẹ con mua được bao nhiêu kg cam ? 

4 tháng 6 2020

Số tiền lãi sau 9 tháng là: 27488916 (đồng)

Số tiền lãi sau 1 tháng là: 6872229 (đồng)

Số tiền lãi sau mỗi quý là: 6872229 x 3 = 20616687 (đồng)

7 tháng 6 2020

gọi G là giao của tia đối tia CD với AM (ta giả sử cung AC  < cung BC)

ý c: từ b suy ra tam giác CDE đồng dạng CFD

=> \(\widehat{ECD}=\widehat{FCD}\) 

ta có: \(\widehat{ECD}+\widehat{GCE}=180^o\) 

\(\widehat{FCD}+\widehat{GCF}=180^o\)

\(\widehat{GCE}=\widehat{GCF}\)suy ra đccm

ý d: CM IK//AB

Ta có: \(\widehat{FDB}=\widehat{FCB}\)(BDCF nôi tiếp đường tròn)

\(\hept{\begin{cases}\widehat{FCB}+\widehat{FBC}=90^o\\\widehat{DCA}+\widehat{CAD}=90^o\end{cases}}\)

mà \(\widehat{CAD}=\widehat{FBC}\)(cùng chắn cung BC)

\(\Rightarrow\widehat{FCB}=\widehat{DCA}\Rightarrow\widehat{FDB}=\widehat{DCA}\)(1)

Tương tự:

\(\hept{\begin{cases}\widehat{ECA}+\widehat{EAC}=90^o\\\widehat{DCB}+\widehat{DBC}=90^o\end{cases}}\)

mà \(\widehat{EAC}=\widehat{DBC}\)(cùng chắn cung AC)

\(\Rightarrow\widehat{ECA}=\widehat{DCB}\). mà \(\widehat{ECA}=\widehat{EDA}\)(tứ giác ECDA nội tiếp nên 2 góc kia cùng chắn cung AE)

\(\Rightarrow\widehat{DCB}=\widehat{EDA}\)(2)

(1)+(2) => \(\widehat{ACD}+\widehat{BCD}=\widehat{FDB}+\widehat{EDA}\)

\(\Rightarrow\widehat{ICK}=\widehat{FDB}+\widehat{EDA}\)\(\Rightarrow\widehat{ICK}+\widehat{IDK}=\widehat{FDB}+\widehat{EDA}+\widehat{IDK}=180^o\)

suy ra tứ giác IDKC nội tiếp \(\Rightarrow\widehat{CKI}=\widehat{CDI}=\widehat{CAE}=\widehat{CBA}\)

mà góc CKI và góc CBA ở vị trí đồng vị suy ra IK//AB. ta đc đccm.

10 tháng 6 2020

địtmẹ thằng ngu


 

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.