Tìm GTLN của biểu thức sau, khi này giá trị của x là bao nhiêu?
\(\left(\frac{18}{\frac{x\left(20-x\right)}{20}+4}\right)^2.\frac{\left(20-x\right)x}{20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo vi ét:
\(\hept{\begin{cases}a_1a_2=1\\a_1+a_2=-p\end{cases}}\) và \(\hept{\begin{cases}b_1b_2=1\\b_1+b_2=-q\end{cases}}\)
Ta có: \(\left(a_1-b_1\right)\left(a_2-b_1\right)\left(a_1+b_2\right)\left(a_2+b_2\right)\)
\(=\left(a_1a_2+b_1^2-a_1b_1-a_2b_1\right)\left(a_1a_2+a_2b_2+b_2^2+a_1b_2\right)\)
\(=\left(1+b_1^2+pb_1\right)\left(1+b_2^2-pb_2\right)\)
\(=1+b_2^2-pb_2+b_1^2+b_1^2b_2^2-pb_1^2b_2+pb_1+pb_1b_2^2-p^2b_1b_2\)
= \(1+b_1^2+b_2^2-pb_2-pb_1+1+pb_1+pb_2-p^2\)
\(=2+\left(b_1+b_2\right)^2-2b_1b_2-p^2\)
\(=q^2-p^2\)
\(\hept{\begin{cases}xy-3y=4x^2\left(1\right)\\y^2+2y+7=7x^2+8x\left(2\right)\end{cases}}\)
Dễ thấy x = 3 không phải là nghiệm của hệ.
(1) <=> \(y=\frac{4x^2}{x-3}\)
Thế vào (2) ta có: \(\frac{16x^4}{\left(x-3\right)^2}+2.\frac{4x^2}{x-3}+7=7x^2+8x\)
<=> \(16x^4+8x^2\left(x-3\right)=\left(7x^2+8x-7\right)\left(x^2-6x+9\right)\)
<=> \(16x^4+8x^3-24x^2=7x^4-34x^3+8x^2+114x-63\)
<=> \(9x^4+42x^3-32x^2-114x+63=0\)
<=> \(\left(3x^2+4x-3\right)\left(3x^2+10x-7\right)=0\)
<=> \(\orbr{\begin{cases}3x^2+4x-3=0\\3x^2+10x-7=0\end{cases}}\)
Với \(3x^2+4x-3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-2+\sqrt{13}}{3}\Rightarrow y=\frac{-5+\sqrt{13}}{3}\\x=\frac{-2-\sqrt{13}}{3}\Rightarrow y=\frac{-5-\sqrt{13}}{3}\end{cases}}\)
Với \(3x^2+10x-7=0\) làm tương tự
\(\hept{\begin{cases}xy-3y=4x^2\\y^2+2y+7=7x^2+8x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left(xy-3y\right)=8x^2\\y^2+2y+7=7x^2+8x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left(xy-3y\right)=8x^2\\y^2+2y+7+8x^2=2\left(xy-3y\right)+7x^2+8x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left(xy-3y\right)=8x^2\\y^2+8y-8x+7+x^2-2xy=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left(xy-3y\right)=8x^2\\\left(x-y\right)^2-8\left(x-y\right)+7=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left(xy-3y\right)=8x^2\\\left(x-y-1\right)\left(x-y-7\right)=0\end{cases}}\)
Tự làm tiếp nhé
THAY X=4+\(\sqrt{2017}\)VÀO PHƯƠNG TRÌNH=>PT CÓ DẠNG ;GÌ ĐÓ GÌ ĐÓ VIẾT RA NHEN<lười chảy nước>
cho pt cộng với chất xúc tác cho ló pư nhanh(hehe)....=\(2025+6\sqrt{2017}-6m-2m\sqrt{2017}=0\)
=>\(0m^2-\left(6+2\sqrt{2017}\right)m+2025+6\sqrt{2017}=0\)rùi tự giải đenta nha, mệt mỏi qué rùi tui coằn ik ngủ mai kiểm tra, nếu rảnh mai tui qua cho kết quả nha sỏ ry nhìu
chắc qua bùn ngủ qué ko giải đenta nha^,^
m=\(\frac{2025+6\sqrt{2017}}{6+2\sqrt{2017}}\)
\(\Delta=\left(2m-3\right)^2>0\Rightarrow m\ne\frac{3}{2}\)
Áp dụng hệ thức Vi-ét,ta có :
\(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4x_1+4x_2=2\left(1-2m\right)\\3x_1-4x_2=11\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7x_1=13-4m\\x_1+x_2=\frac{1-2m}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_2=\frac{1-2m}{2}-x_1=\frac{1-2m}{2}-\frac{13-4m}{7}=\frac{-6m-19}{14}\end{cases}}\)
Mà \(x_1x_2=\frac{m-1}{2}\Rightarrow\frac{13-4m}{7}.\frac{-6m-19}{14}=\frac{m-1}{2}\)
\(\Rightarrow\orbr{\begin{cases}m=\frac{33}{8}\\m=-2\end{cases}\left(tm\right)}\)
Vậy ...
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
gọi số cần tìm là xy (đk;x thuộc N*;y thuộc N)
theo bài ra ta có hệ pt \(\hept{\begin{cases}x+y=9\\\overline{xy}=2\overline{ỹx}+18\end{cases}}\)=>\(\hept{\begin{cases}x=9-y\\10x+y=2\left(10y+x\right)+18\end{cases}}\)
thay x=9-y vào vế dưới =>10(9-y)+y=[2(10y+9-y)]+18 (... phương trình này cộng với chất xúc tác đẩy nhanh quá trình khai triển,biến đổi.. ) =>y=2;x=9-y=7<HÁ HÁ HỚ HỚ HỐ HỐ>
VẬY SỐ CẦN TÌM LÀ 27,OKEY
Đặt \(\frac{x\left(20-x\right)}{20}=a\)
\(\Rightarrow A=\left(\frac{18}{a+4}\right)^2a\)
Áp dụng bđt AM-GM ta có \(\left(a+4\right)^2\ge4.4a=16a\)
\(\Rightarrow A\le\frac{18^2a}{16a}=\frac{81}{4}\)
Dấu "=" xảy ra khi a=4
\(\Rightarrow\frac{\left(20-x\right)x}{20}=4\)
Tự tính tiếp :P
toi khong biet