Cho a,b,c>0 thoa mãn abc=1.CMR\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=2\Leftrightarrow\left(1-\frac{a}{a+1}\right)+\left(1-\frac{b}{b+1}\right)+\left(1-\frac{c}{c+1}\right)=1\)\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)\(\Leftrightarrow\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)+\left(a+1\right)\left(b+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)\(\Leftrightarrow a+b+c+2=abc\ge3\sqrt[3]{abc}+2\)(Bất đẳng thức Cô - si)
Đặt \(t=\sqrt[3]{abc}\)thì \(t^3\ge3t^3+2\Leftrightarrow\left(t-2\right)\left(t+1\right)^2\ge0\Leftrightarrow t\ge2\)(Do \(\left(t+1\right)^2>0\forall t>0\))
\(\Rightarrow abc\ge8\)
\(\Rightarrow ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge12\)(đpcm)
Đẳng thức xảy ra khi a = b = c = 2
Ta có:
\(\left(a+1\right)^2\left(b+1\right)^2=\left[\left(a+1\right)\left(b+1\right)\right]^2=\left(1+a+b+ab\right)^2\)
\(=\left[\left(ab+1\right)+\left(a+b\right)\right]^2\ge4\left(a+b\right)\left(ab+1\right)\)
\(=4a^2b+4ab^2+4a+4b=\left(4a^2b+4b\right)+\left(4ab^2+4a\right)\)
\(=4a\left(1+b^2\right)+4b\left(1+a^2\right)\)
\(\Rightarrow\frac{\left(a+1\right)^2\left(b+1\right)^2}{1+c^2}\ge\frac{4a\left(1+b^2\right)}{1+c^2}+\frac{4b\left(1+a^2\right)}{1+c^2}\)
Tương tự ta chứng minh được:
\(\frac{\left(b+1\right)^2\left(c+1\right)^2}{1+a^2}\ge\frac{4c\left(1+b^2\right)}{1+a^2}+\frac{4b\left(1+c^2\right)}{1+a^2}\)
\(\frac{\left(a+1\right)^2\left(c+1\right)^2}{1+b^2}\ge\frac{4a\left(1+c^2\right)}{1+b^2}+\frac{4c\left(1+a^2\right)}{1+b^2}\)
Cộng vế 3 BĐT trên lại ta được:
\(VT\ge4a\left(\frac{1+b^2}{1+c^2}+\frac{1+c^2}{1+b^2}\right)+4b\left(\frac{1+a^2}{1+c^2}+\frac{1+c^2}{1+a^2}\right)+4c\left(\frac{1+a^2}{1+b^2}+\frac{1+b^2}{1+a^2}\right)\)
\(\ge8a+8b+8c=8\left(a+b+c\right)=8\cdot3=24\) (BĐT Cauchy)
Dấu "=" xảy ra khi: a = b = c = 1
Áp dụng bất đẳng thức AM - GM, ta được:
\(\left(a+1\right)^2\left(b+1\right)^2=\left(ab+1+a+b\right)^2\ge4\left(ab+1\right)\left(a+b\right)=4a\left(1+b^2\right)+4b\left(1+a^2\right)\)\(\Rightarrow\frac{\left(a+1\right)^2\left(b+1\right)^2}{1+c^2}\ge4a.\frac{1+b^2}{1+c^2}+4b.\frac{1+a^2}{1+c^2}\)
Tương tự: \(\frac{\left(b+1\right)^2\left(c+1\right)^2}{1+a^2}\ge4b.\frac{1+c^2}{1+a^2}+4c.\frac{1+b^2}{1+a^2}\); \(\frac{\left(c+1\right)^2\left(a+1\right)^2}{1+b^2}\ge4c.\frac{1+a^2}{1+b^2}+4a.\frac{1+c^2}{1+b^2}\)Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{\left(a+1\right)^2\left(b+1\right)^2}{1+c^2}+\frac{\left(1+b\right)^2\left(1+c\right)^2}{1+a^2}+\frac{\left(1+a\right)^2\left(1+c\right)^2}{1+b^2}\)\(\ge4a.\frac{1+b^2}{1+c^2}+4b.\frac{1+a^2}{1+c^2}+4b.\frac{1+c^2}{1+a^2}+4c.\frac{1+b^2}{1+a^2}+4c.\frac{1+a^2}{1+b^2}+4a.\frac{1+c^2}{1+b^2}\)\(=\left(4a.\frac{1+b^2}{1+c^2}+4a.\frac{1+c^2}{1+b^2}\right)+\left(4b.\frac{1+a^2}{1+c^2}+4b.\frac{1+c^2}{1+a^2}\right)+\left(4c.\frac{1+b^2}{1+a^2}+4c.\frac{1+a^2}{1+b^2}\right)\)\(\ge8\left(a+b+c\right)=24\)Đẳng thức xảy ra khi a = b = c = 1Ta có: \(\hept{\begin{cases}x^2-xy+y^2=8\\x^2+3xy+y^2=15\end{cases}}\Leftrightarrow\hept{\begin{cases}4xy=7\\x^2-xy+y^2=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{7}{4y}\\x^2-xy+y^2=8\end{cases}}\) thay vào ta được:
\(\left(\frac{7}{4y}\right)^2-\frac{7}{4}+y^2=8\Leftrightarrow\frac{49}{16y^2}+y^2=\frac{39}{4}\)
\(\Leftrightarrow\frac{16y^4+49}{16y^2}=\frac{39}{4}\Leftrightarrow16y^4+49=156y^2\)
\(\Leftrightarrow16y^4-156y^2+49=0\)
\(\Leftrightarrow\orbr{\begin{cases}y^2=\frac{39+5\sqrt{53}}{8}\\y^2=\frac{39-5\sqrt{53}}{8}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\sqrt{\frac{39+5\sqrt{53}}{8}}\Rightarrow x=\frac{7}{4\sqrt{\frac{39+5\sqrt{53}}{8}}}\\y=\sqrt{\frac{39-5\sqrt{53}}{8}}\Rightarrow x=\frac{7}{4\sqrt{\frac{39-5\sqrt{53}}{8}}}\end{cases}}\)
Vậy HPT có 2 nghiệm (x;y) thỏa mãn:
\(\left(\frac{7}{4\sqrt{\frac{39+5\sqrt{53}}{8}}};\sqrt{\frac{39+5\sqrt{53}}{8}}\right);\left(\frac{7}{4\sqrt{\frac{39-5\sqrt{53}}{8}}};\sqrt{\frac{39-5\sqrt{53}}{8}}\right)\)
Em cũng bị sau đó thì tìm zalo cô giáo để gửi bài thui nè
Ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)\(\Leftrightarrow\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)\(\Leftrightarrow4\left(ab+bc+ca\right)+4\left(a+b+c\right)\ge3abc+3\left(ab+bc+ca\right)+3\left(a+b+c\right)+3\)\(\Leftrightarrow ab+bc+ca+a+b+c\ge6\)(abc = 1)
Bất đẳng thức cuối đúng theo bất đẳng thức Cô - si nên ta có điều phải chứng minh
Đẳng thức xảy ra khi a = b = c = 1