K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4

a) x = 0 là nghiệm của P(x) nên:

P(0) = 0

2.0 + a - 1 = 0

a = 1

b) x = 1 là nghiệm của P(x) nên:

P(1) = 0

2.1 + a - 1 = 0

a + 1 = 0

a = -1

12 tháng 4

a) Do P(x) nhận `x=0` là nghiệm nên: 

Thay `x=0` vào P(x) ta có:

\(2\cdot0+a-1=0\)

\(\Rightarrow a-1=0\)

\(\Rightarrow a=1\)

b) Do P(x) nhận `x=1` là nghiệm nên: 

Thay `x=1` vào P(x) ta có:

\(2\cdot1+a-1=0\)

\(\Rightarrow2+a-1=0\)

\(\Rightarrow a+1=0\)

\(\Rightarrow a=-1\) 

12 tháng 4

 

3x(12x – 4) – 9x(4x – 3) = 30

3x.12x – 3x.4 – (9x.4x – 9x.3) = 30

36x2 – 12x – 36x2 + 27x = 30

(36x2 – 36x2) + (27x – 12x) = 30

15x = 30

x = 2

Vậy x = 2.

 

Chúc bạn học tốt, tick cho tui nhoe

 

a: \(10x^2-7x+a⋮2x-3\)

=>\(10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0

=>a=-12

b: \(2x^2+ax-4⋮x+4\)

=>\(2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)

=>-4a+28=0

=>a=7

a: A(x)+B(x)

\(=-3x^3+5x^2+4x+1+3x^3+6x^2-8x+9\)

\(=11x^2-4x+10\)

A(x)-B(x)

\(=-3x^3+5x^2+4x+1-3x^3-6x^2+8x-9\)

\(=-6x^3-x^2+12x-8\)

b: C(x)+D(x)

\(=-x^3+5x^2+5x-\dfrac{3}{4}+4x^3-5x^2-3x-\dfrac{1}{4}\)

\(=3x^3+2x-1\)

C(x)-D(x)

\(=-x^3+5x^2+5x-\dfrac{3}{4}-4x^3+5x^2+3x+\dfrac{1}{4}\)

\(=-5x^3+10x^2+8x-\dfrac{1}{2}\)

c: E(x)+F(x)

\(=3x^3+7x^2+5x-8+3x^3+7x^2-9x+1\)

\(=6x^3+14x^2-4x-7\)

E(x)-F(x)

\(=3x^3+7x^2+5x-8-3x^3-7x^2+9x-1\)

\(=14x-9\)

d: G(x)+H(x)

\(=5x^4-6x^3-3x^2-2x+8+x^4+3x^2-3x-5\)

\(=6x^4-6x^3-5x+3\)

G(x)-H(x)

\(=5x^4-6x^3-3x^2-2x+8-x^4-3x^2+3x+5\)

\(=4x^4-6x^3-6x^2+x+13\)

e: I(x)+J(x)

\(=5x^4-2x^3-6x^2+7x+6+2x^3+3x^2-7x-5\)

\(=5x^4-3x^2+1\)

I(x)-J(x)

\(=5x^4-2x^3-6x^2+7x+6-2x^3-3x^2+7x+5\)

\(=5x^4-4x^3-9x^2+14x+11\)

f: K(x)+L(x)

\(=4x^4+3x^3+5x^2-2x+6-4x^4-3x^3-4x^2+2x-9\)

\(=x^2-3\)

K(x)-L(x)

\(=4x^4+3x^3+5x^2-2x+6+4x^4+3x^3+4x^2-2x+9\)

\(=8x^4+6x^3+9x^2-4x+15\)

g: M(x)+N(x)

\(=-5x^4+4x^3-5x^2-\dfrac{1}{2}x-19+6x^4-4x^3+3x^2+\dfrac{1}{2}x-20\)

\(=x^4-2x^2-39\)

M(x)-N(x)

\(=-5x^4+4x^3-5x^2-\dfrac{1}{2}x-19-6x^4+4x^3-3x^2-\dfrac{1}{2}x+20\)

\(=-11x^4+8x^3-8x^2-x+1\)

h:

\(O\left(x\right)=x^5+x^3-4x-x^5+3x+7\)

\(=\left(x^5-x^5\right)+x^3+\left(-4x+3x\right)+7\)

\(=x^3-x+7\)

\(P\left(x\right)=3x^2-x^3+8x-3x^2-14\)

\(=-x^3+\left(3x^2-3x^2\right)+8x-14=-x^3+8x-14\)

O(x)+P(x)

\(=x^3-x+7-x^3+8x-14\)

\(=7x-7\)

O(x)-P(x)

\(=x^3-x+7+x^3-8x+14\)

\(=2x^3-9x+21\)

AH
Akai Haruma
Giáo viên
11 tháng 4

Lời giải:
Ta thấy:

$x^4\geq 0; x^2\geq 0$ với mọi $x$
$\Rightarrow Q(x)=x^4+3x^2+1\geq 1>0$ với mọi $x$

$\RIghtarrow Q(x)$ không có nghiệm với mọi $x$

AH
Akai Haruma
Giáo viên
11 tháng 4

Lời giải:
a. Vì $P(x)$ có nghiệm $x=-1$ nên:

$P(-1)=0$

$\Leftrightarrow m(-1)^2+2m(-1)-3=0$

$\Leftrightarrow m-2m-3=0$

$\Leftrightarrow -m-3=0\Leftrightarrow m=-3$

b.

Có:

$P(-1)=a(-1)^2+b(-1)+c=a-b+c$

$P(-2)=a(-2)^2+b(-2)+c=4a-2b+c$

$\Rightarrow P(-1)+P(-2)=5a-3b+2c=0$

$\Rightarrow P(-1)=-P(-2)$
$\Rightarrow P(-1)P(-2)=-P(-2)P(-2)=-P^2(-2)\leq 0$ (đpcm)

11 tháng 4

Trong hình học Euclid, một tam giác thường được xác định bởi ba cạnh và ba góc. Để một tam giác tồn tại, ta cần biết điều kiện cho ba cạnh và ba góc. Trong trường hợp bạn đề cập, nếu ta có một cạnh là góc vuông và một góc nhọn không kề cạnh với góc vuông đó, thì sẽ xảy ra mâu thuẫn.

Vì trong một tam giác, tổng các góc bằng 180 độ, và trong một tam giác vuông, một góc là 90 độ. Nếu một góc khác không kề với góc vuông, nó sẽ phải nằm ở phần còn lại của tam giác, tức là từ 180 độ trừ đi 90 độ, tức là 90 độ. Nhưng điều này không thể xảy ra vì trong tam giác, không thể có góc nào lớn hơn 90 độ.

Vậy nên, một tam giác với một cạnh là góc vuông và một góc nhọn không kề cạnh với nó không thể tồn tại trong hình học Euclid.

12 tháng 4

loading...    

a) ∆ABC vuông tại A (gt)

⇒ ∠ABC + ∠BCA = 90⁰ (hai góc nhọn trong tam giác vuông phụ nhau)

b) Do CE là đường phân giác của ∆ABC (gt)

⇒ CE là tia phân giác của ∠ACB

⇒ ∠ACE = ∠BCE

⇒ ∠ACE = ∠HCE

Xét hai tam giác vuông: ∆ACE và ∆HCE có:

CE là cạnh chung

∠ACE = ∠HCE (cmt)

⇒ ∆ACE = ∆HCE (cạnh huyền - góc nhọn)

⇒ AC = HC (hai cạnh tương ứng)

c) Do ∆ACE = ∆HCE (cmt)

⇒ AE = HE (hai cạnh tương ứng)

⇒ E nằm trên đường trung trực của AH (1)

Do AC = HC (cmt)

⇒ C nằm trên đường trung trực của AH (2)

Từ (1) và (2) ⇒ CE là đường trung trực của AH

Mà I là giao điểm của AH và CE (gt)

⇒ I là trung điểm của AH

⇒ IA = IH

d) Trên tia đối của tia MA lấy điểm D sao cho AM = DM

⇒ M là trung điểm của AD

Do M là trung điểm của BC (gt)

⇒ BM = CM

Xét ∆ABM và ∆DCM có:

AM = DM

∠AMB = ∠DMC (đối đỉnh)

BM = CM (cmt)

⇒ ∆ABM = ∆DCM (c-g-c)

⇒ ∠BAM = ∠CDM (hai góc tương ứng)

Mà ∠BAM và ∠CDM là hai góc so le trong

⇒ AB // CD

Mà AB ⊥ AC (∆ABC vuông tại A)

⇒ CD ⊥ AC

Do ∆ABM = ∆DCM (cmt)

⇒ AB = CD (hai cạnh tương ứng)

Xét hai tam giác vuông: ∆ABD và ∆CDB có:

AB = CD (cmt)

DB là cạnh chung

⇒ ∆ABD = ∆CDB (hai cạnh góc vuông)

⇒ AD = BC (hai cạnh tương ứng)

Mà M là trung điểm của AD (cmt)

⇒ AD = 2AM

⇒ BC = 2AM

4
456
CTVHS
11 tháng 4

50% x x + 15,4 = 2 x 8,7

50% x x + 15,4 = 17,4

50% x x            = 17,4 - 15,4

50% x x            = 2

0,5   x x            = 2

           x            = 2: 0,5

           x            = 4

4
456
CTVHS
11 tháng 4

(bạn để để đúng lớp nhé)