phân tích đa thức thành nhân tử
a)70a+84b-20ab-24b2
b) x2y+xy2+x2z+xz2+y2z+yz2+3xyz
c) x2y+xy2+x2z+xz2+y2z+yz2+2xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\neq 2; x\neq -3$
\(\frac{x+2}{x+3}-\frac{5}{(x+3)(x-2)}-\frac{1}{x-2}=\frac{(x+2)(x-2)-5-(x+3)}{(x+3)(x-2)}\\ =\frac{x^2-4-5-x-3}{(x+3)(x-2)}=\frac{x^2-x-12}{(x+3)(x-2)}\\ =\frac{(x+3)(x-4)}{(x+3)(x-2)}=\frac{x-4}{x-2}\)
Bài 4:
a. Ta thấy: $x^2-x+2=(x-\frac{1}{2})^2+1,75>0$ với mọi $x$.
Do đó để $B=\frac{x^2-x+2}{x-3}<0$ thì $x-3<0$
$\Leftrightarrow x<3$
b.
$B=\frac{x(x-3)+2(x-3)+8}{x-3}=x+2+\frac{8}{x-3}$
Với $x$ nguyên, để $B$ nguyên thì $x-3$ phải là ước của 8.
$\Rightarrow x-3\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$
$\Rightarrow x\in \left\{4; 2; 5; 1; -1; 7; 11; -5\right\}$
Bài 5:
\(\frac{\frac{x}{x-y}-\frac{y}{x+y}}{\frac{y}{x-y}+\frac{x}{x+y}}=\frac{\frac{x(x+y)-y(x-y)}{(x-y)(x+y)}}{\frac{y(x+y)+x(x-y)}{(x-y)(x+y)}}\)
\(=\frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)}=\frac{x^2+y^2}{x^2+y^2}=1\)
1) $x^2-y^2-2x+2y$
$=(x^2-y^2)-(2x-2y)$
$=(x-y)(x+y)-2(x-y)$
$=(x-y)(x+y-2)$
2) $2x+2y-x^2-xy$
$=(2x+2y)-(x^2+xy)$
$=2(x+y)-x(x+y)$
$=(x+y)(2-x)$
3) $3a^2-6ab+3b^2-12c^2$
$=3(a^2-2ab+b^2-4c^2)$
$=3[(a^2-2ab+b^2)-4c^2]$
$=3[(a-b)^2-(2c)^2]$
$=3(a-b-2c)(a-b+2c)$
4) $x^2-25+y^2+2xy$
$=(x^2+2xy+y^2)-25$
$=(x+y)^2-5^2$
$=(x+y-5)(x+y+5)$
5) $a^2+2ab+b^2-ac-bc$
$=(a^2+2ab+b^2)-(ac+bc)$
$=(a+b)^2-c(a+b)$
$=(a+b)(a+b-c)$
6) $x^2-2x-4y^4-4y$
$=(x^2-4y^2)-(2x+4y)$
$=[x^2-(2y)^2]-2(x+2y)$
$=(x-2y)(x+2y)-2(x+2y)$
$=(x+2y)(x-2y-2)$
7) $x^2y-x^3-9y+9x$
$=(x^2y-x^3)-(9y-9x)$
$=x^2(y-x)-9(y-x)$
$=(y-x)(x^2-9)$
$=(y-x)(x^2-3^2)$
$=(y-x)(x-3)(x+3)$
8) $x^2(x-1)+16(1-x)$
$=x^2(x-1)-16(x-1)$
$=(x-1)(x^2-16)$
$=(x-1)(x^2-4^2)$
$=(x-1)(x-4)(x+4)$
9) $3x^2-6x+9x^3$
$=3x^2+3x-9x+9x^3$
$=3x(x+1)-9x(1-x^2)$
$=3x(x+1)+9x(x^2-1)$
$=3x(x+1)+9x(x-1)(x+1)$
$=(x+1)[3x+9x(x-1)]$
$=(x+1)(3x+9x^2-9x)$
$=(x+1)(9x^2-6x)$
$=3(x+1)(3x^2-2x)$
$=3x(x+1)(3x-2)$
10) $10x(x-y)-6y(y-x)$
$=10x(x-y)+6y(x-y)$
$=(x-y)(10x+6y)$
$=2(x-y)(5x+3y)$
11) $3x^2+5y-3xy-5x$
$=(3x^2-3xy)-(5x-5y)$
$=3x(x-y)-5(x-y)$
$=(x-y)(3x-5)$
12) $x^5-3x^4+3x^3-x^2$
$=x^2(x^3-3x^2+3x-1)$
$=x^2(x-1)^3$
13) $(x^2+1)^2-4x^2$
$=(x^2+1)^2-(2x)^2$
$=(x^2+1-2x)(x^2+1+2x)$
$=(x^2-2x+1)(x^2+2x+1)$
$=(x-1)^2(x+1)^2$
14) $x^2-4x-5$
$=x^2+x-5x-5$
$=x(x+1)-5(x+1)$
$=(x+1)(x-5)$
15) $x^2+8x+15$
$=x^2+3x+5x+15$
$=x(x+3)+5(x+3)$
$=(x+3)(x+5)$
16) $81x^4+4$
$=[(9x^2)^2+2\cdot9x^2\cdot 2+2^2]-2\cdot9x^2\cdot2$
$=(9x^2+2)^2-36x^2$
$=(9x^2+2)^2-(6x)^2$
$=(9x^2+2-6x)(9x^2+2+6x)$
17) $2x^2+3x-5$
$=2x^2-2x+5x-5$
$=2x(x-1)+5(x-1)$
$=(x-1)(2x+5)$
18) $16x-5x^2-3$
$=-5x^2+16x-3$
$=-5x^2+15x+x-3$
$=-5x(x-3)+(x-3)$
$=(x-3)(1-5x)$
$Toru$
Lời giải:
Ta có:
$a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=2^2-2(-23)=4+46=50$
Lời giải:
$M=x^3+y^3+2xy=(x+y)(x^2-xy+y^2)+2xy=x^2-xy+y^2+2xy$
$=x^2+y^2+xy=\frac{1}{4}(x-y)^2+\frac{3}{4}(x+y)^2=\frac{1}{4}(x-y)^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$
a) \(70a+84b-20ab-24b^2\)
\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)
\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)
\(=\left(5a+6b\right)\left(14-4b\right)\)
\(=2\left(5a+6b\right)\left(7-2b\right)\)
b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xyz+xz^2\right)+\left(xyz+y^2z+yz^2\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)
c) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
\(=\left(x^2y+xy^2\right)+\left(xz^2+yz^2\right)+\left(x^2z+2xyz+y^2z\right)\)
\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x^2+2xy+y^2\right)\)
\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2\)
\(=\left(x+y\right)\left[xy+z^2+z\left(x+y\right)\right]\)
\(=\left(x+y\right)\left(xy+z^2+xz+yz\right)\)
\(=\left(x+y\right)\left[\left(xy+yz\right)+\left(xz+z^2\right)\right]\)
\(=\left(x+y\right)\left[y\left(x+z\right)+z\left(x+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
a, 70a + 84b - 20ab - 24b2
= 14.(5a + 6b) - 4b(5a + 6b)
= (5a + 6b).(14 - 4b)