Cho A = 3+3 mũ2 + 3 mũ3 + .......+ 3 mũ 2024 .Tìm số dư khi chia A cho 13 b)Chứng tỏ rằng: A = 1+ 4+ 4mũ2 +4mũ3+......+ 4mũ2021 chia hết cho 21. GIÚP MIK VỚI Ạ MIK ĐANG CẦN GẤP.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x (2x - 9) = 3x(x - 5) `
`<=> 2x^2 - 9x = 3x^2 - 15x`
`<=> 3x^2 - 2x^2 - 15x + 9x =0`
`<=> x^2 - 6x = 0`
`<=> x(x-6) = 0`
`<=> x = 0` hoặc `x - 6 = 0`
`<=> x = 0` hoặc `x = 6`
Vậy ....
Để giải quyết bài toán này, ta thực hiện các bước sau:
### a) Tính diện tích nền nhà
Nền nhà có dạng hình chữ nhật với chiều dài là 8 mét và chiều rộng bằng một nửa chiều dài.
Chiều rộng của nền nhà:
\[ \text{Chiều rộng} = \frac{1}{2} \times \text{Chiều dài} = \frac{1}{2} \times 8 = 4 \text{ mét} \]
Diện tích của nền nhà được tính bằng công thức diện tích hình chữ nhật:
\[ \text{Diện tích} = \text{Chiều dài} \times \text{Chiều rộng} = 8 \text{ m} \times 4 \text{ m} = 32 \text{ m}^2 \]
### b) Tính số viên gạch cần dùng
Mỗi viên gạch có hình vuông với cạnh là 4 dm (decimet). Ta cần đổi đơn vị của kích thước gạch từ dm sang m để tính diện tích của từng viên gạch.
1 dm = 0,1 m, nên:
\[ \text{Cạnh của viên gạch} = 4 \text{ dm} = 4 \times 0,1 \text{ m} = 0,4 \text{ m} \]
Diện tích của một viên gạch là:
\[ \text{Diện tích của viên gạch} = \text{Cạnh} \times \text{Cạnh} = 0,4 \text{ m} \times 0,4 \text{ m} = 0,16 \text{ m}^2 \]
Số viên gạch cần dùng để lát nền nhà là:
\[ \text{Số viên gạch} = \frac{\text{Diện tích nền nhà}}{\text{Diện tích của một viên gạch}} = \frac{32 \text{ m}^2}{0,16 \text{ m}^2} = 200 \text{ viên} \]
### Kết quả
a) Diện tích nền nhà là \( 32 \text{ m}^2 \).
b) Số viên gạch cần dùng để lát nền nhà là 200 viên.
a) Chiều rộng nền nhà là:
`8 : 2 = 4 (m)`
Diện tích nền nhà là:
`8 . 4 = 32 (m^2)`
b) Diện tích 1 viên gạch là:
`4 . 4 = 16 (dm^2)`
Đổi `16dm^2 = 0,16m^2`
Số viên gạch cần dùng lát nền nhà là:
`32 : 0,16 = 200` (viên)
Đáp số: ....
\(x^3+ax+b\\ =\left(x^3+4x^2+3x\right)+\left(-4x^2-16x-12\right)+\left(a+13\right)x+\left(b+12\right)\\ =x\left(x^2+4x+3\right)-4\left(x^2+4x+3\right)+\left(a+13\right)x+\left(b+12\right)\\ =\left(x-4\right)\left(x^2+4x+3\right)+\left(a+13\right)x+\left(b+12\right)\)
Để `x^3+ax+b` chia hết cho `x^2+4x+3` thì:
\(\left\{{}\begin{matrix}a+13=0\\b+12=0\end{matrix}\right.=>\left\{{}\begin{matrix}a=-13\\b=-12\end{matrix}\right.\)
Gọi cạnh của hình lập phương đó là `x (cm)`
Điều kiện: `x > 0`
Diện tích toán phần của hình lập phương là:
`x . x . 6 = 6x^2`
Thể tích hình lập phương là:
`x . x . x = x^3`
Mà diện tích toàn phần của hình lập phương bằng thể tích của nó
`=> x^3 = 6x^2`
`=> x^3 - 6x^2 = 0`
`=> x^2 (x - 6) = 0`
`=> x = 0` hoặc `x = 6`
Mà `x > 0` nên `x = 6`
Vậy cạnh của hình lập phương là `6cm`
Thể tích hình lập phương là:
`6^3 = 216 (cm^3)`
Vậy ....
Bài 3: Các cặp góc so le trong là: \(\widehat{tBO};\widehat{BOC}\); \(\widehat{OBC};\widehat{yOB}\); \(\widehat{BCO};\widehat{x'OC}\); \(\widehat{t'CO};\widehat{BOC}\)
Các cặp góc đồng vị là:
\(\widehat{xBt};\widehat{xOy}\); \(\widehat{tBO};\widehat{x'Oy}\); \(\widehat{y'Ct'};\widehat{x'Oy'}\); \(\widehat{t'CO};\widehat{x'Oy}\)
Bài 2:
Các cặp góc so le trong là \(\widehat{FEC};\widehat{ACB}\)
Các cặp góc đồng vị là \(\widehat{ADE};\widehat{ABC}\); \(\widehat{AED};\widehat{ACB}\)
Các cặp góc trong cùng phía là: \(\widehat{BDE};\widehat{B}\); \(\widehat{DEC};\widehat{ECB}\)
Ta thấy
b - 1 < b < b + 1
=> b - 1; b; b + 1 là 3 số tự nhiên liên tiếp sắp xếp theo thứ tự tăng dần
m < m + 1 < m + 2
=> m; m + 1; m + 2 là 3 số tự nhiên liên tiếp sắp xếp theo thứ tự tăng dần
n + 1 < n + 2 < n + 3
=> n + 1; n + 2; n + 3 là 3 số tự nhiên liên tiếp sắp xếp theo thứ tự tăng dần
c + 1 > c > c - 1
=> c + 1; c; c - 1 là 3 số tự nhiên liên tiếp sắp xếp theo thứ tự giảm dần
Chọn phương án số 2
`-1/3<=x/3<=-1/6`
`=>-2/6<=2x/3<=-1/6`
`=>-2<=2x<=-1`
`=>-2/2<=x<=-1/2`
`=>-1<=x<=-1/2`
\(\dfrac{-1}{2}< \dfrac{x}{3}< \dfrac{-1}{6}\)
`=>` \(\dfrac{-3}{6}< \dfrac{2x}{6}< \dfrac{-1}{6}\)
`=> -3 < 2x < -1`
Mà `2x` là số nguyên
`=> 2x = -2`
`=> x = -1`
Vậy `x = -1`
`4^3<=2^x<=2^10`
`=>(2^2)^3<=2^x<=2^10`
`=>2^(2*3)<=2^x<=2^10`
`=>2^6<=2^x<=2^10`
`=>6<=x<=10`
Ta có:
\(A=3+3^2+3^3+...+3^{2024}\\ =\left(3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2022}+3^{2023}+3^{2024}\right)\\ =12+3^3\cdot\left(1+3+3^2\right)+3^{2022}\cdot\left(1+3+3^2\right)\\ =12+13\cdot\left(3^3+...+3^{2022}\right)\)
=> A chia 13 dư 12
\(A=1+4+4^2+...+4^{2021}\\ =\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2019}+4^{2020}+4^{2021}\right)\\ =21+4^3\cdot\left(1+4+4^2\right)+...+4^{2019}\cdot\left(1+4+4^2\right)\\ =21+4^3\cdot21+...+4^{2019}\cdot21\\ =21\cdot\left(1+4^3+...+4^{2019}\right)\)