K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

A N B C M

Vì tam giác ABC cân tại A suy ra AB=AC= 15 cm

Mà AM+MC=AC nên 9 + MC= 15

suy ra MC=6cm

Vì BM là phân giác của góc B nên 

\(\frac{AM}{MC}=\frac{AB}{BC}\Leftrightarrow\frac{9}{6}=\frac{15}{BC}\Rightarrow BC=10cm\)

b) Vì \(\widehat{ABM}=\widehat{MBC}=\frac{\widehat{ABC}}{2}\)

\(\widehat{ACN}=\widehat{NCB}=\frac{\widehat{ACB}}{2}\)

Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)

nên \(\widehat{ABM}=\widehat{MBC}=\)\(\widehat{ACN}=\widehat{NCB}\)

Xét tam giác ABM và tam giác ACN

có AB=AC(GT); góc A chung; \(\widehat{ABM}=\widehat{ACN}\)

suy ra tam giác ABM = tam giác ACN ( g.c.g)

suy ra AN=AM  suy ra tam giác AMN cân tại A suy ra \(\widehat{ANM}=\widehat{AMN}\)

Xét tam giác AMN có \(\widehat{ANM}+\widehat{AMN}+\widehat{A}=180^0\Rightarrow\widehat{ANM}=\frac{180^0-\widehat{A}}{2}\)(1)

Vì tam giác ABC cân tại A suy ra \(\widehat{ABC}+\widehat{ACB}+\widehat{A}=180^0\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (!) và (2) suy ra \(\widehat{ANM}\)\(\widehat{ABC}\)

Mà góc ANM đồng vị với góc ABC

suy ra MN//BC

c) Vì MN//BC ta có

\(\frac{MN}{BC}=\frac{AM}{AC}\Rightarrow\frac{MN}{10}=\frac{9}{15}\Rightarrow MN=6cm\)

CHÚC EM HỌC TỐT

17 tháng 12 2021

a) ΔABC có FB=FC ( gt)

                EA=EC ( gt)

Suy ra FE là đường trung bình của ΔABC

b) Ta có: FE=1/2 AB và FE//AB ( FE là đường trung bình của ΔABC)

mà AD cũng =1/2 AB. suy ra FE=AD (1)

có AD∈AB mà FE//AB. suy ra FE//AD (2)

Từ (1) và (2) ➜ DAEF là hình bình hành

Bạn tự vẽ hình nha, sorry vì mình biet nhiu đó 

3 tháng 3 2020

C A B M P N

a) Xét tứ giác MNCP có :

CP // MN ( \(BC//MN;P\in BC\))

PM // CN ( \(PM//AC;N\in AC\))

=> Tứ giác MNCP là hình bình hành ( dhnb 1 )

b) Để hình bình hành MNCP ( cmt ) là hình thoi \(\Leftrightarrow\)CM là đường phân giác của \(\widehat{NCP}\)

\(\Leftrightarrow\)CM là đường phân giác của \(\widehat{ACB}\)\(N\in AC;P\in BC\))

Mà vì tam giác ABC cân tại C ( gt ) => Đường phân giác trùng với đường trung tuyến ( tính chất tam giác cân )

\(\Leftrightarrow\)CM cũng là đường trung tuyến của \(\Delta ABC\)

\(\Leftrightarrow\)M là trung điểm của AB

3 tháng 3 2020

\(\left(2x+3\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+3+x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow x-4=0\)hoặc \(3x-2=0\)

\(\Leftrightarrow x=4\)         hoặc \(x=\frac{2}{3}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{2}{3};4\right\}\)

3 tháng 3 2020

\(\left(2x+3\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+3\right)\left(x-4\right)+\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+8=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)

3 tháng 3 2020

A B C D E F

Thấy đề sai sai á :)) Hóng cách làm  vậy ....

3 tháng 3 2020

ông cố mày cũng đéo biết

3 tháng 3 2020

Kẻ đoạn thẳng AC nối hai điểm A và C. Gọi O là giao điểm của đoạn thẳng AC và đoạn thẳng EF. Theo đề bài, do EF//AB và EF//CD nên áp dụng định lý Talet trong tam giác, ta có:

Xét tam giác ABC:\(\frac{FC}{FB}=\frac{OC}{OA}\)(1)

Xét tam giác ACD:\(\frac{OC}{OA}=\frac{ED}{AD}\)(2)

Từ (1) và (2), suy ra \(\frac{ED}{AD}=\frac{FC}{BC}\)(đpcm)

3 tháng 3 2020

A B C D E F O

Gọi giao điểm của AC và EF là O

Xét tam giác ABC có:OF//AB ( EF//AB)

\(\Rightarrow\frac{FC}{BC}=\frac{OC}{AC}\)( định lý Ta-let ) (1)

Xét tam giác ADC có OE//DC ( EF//DC)

\(\Rightarrow\frac{ED}{AD}=\frac{OC}{AC}\)( định lý Ta-let ) (2)

Từ (1) và (2) \(\Rightarrow\frac{FC}{BC}=\frac{ED}{AD}\left(đpcm\right)\)

3 tháng 3 2020

Gọi số cần tìm là ab. Theo đề bài, ta có:

a:2=b

ab + 810=a.100+90+b

a.10+a.1/2 +810=a.100+90+b.1/2

a(10+1/2) +810=a(100+1/2)+90

a10,5+810=a.100,5+90

<=>100,5a+90-10,5a-810=0

<=>90a-720=0

<=>90a=720

<=>a=8

<=>b=8:2=4

Vậy số cần tìm là 84