Cho tam giác ABC và tọa độ một đỉnh và phương trình đường cao.Viết phương trình các cạnh của tam giác đó với:
a, A(3,0),BB'=2x+2y-9=0;CC'=3x-12y-1=0
b,A(1,0), BB'=x-2y+1=0;CC'=3x+y-1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này bạn chia làm 2 trường hợp Q thuộc đoạn AD và Q nằm ngoài AD
- Trường hợp 1
Từ gt => OA=5, OQ=4, và OM=ON=OP=3
Áp dụng định lý Pytago cho các tam giác QAO và tam giác MAO vuông ứng ứng lần lượt tại Q và M ta có:
AQ2=AO2-OQ2=52-42=32 => AQ+3
AM2=AO2-OM2=52-32=42 => AM=4
=> AM=QO và AQ=MO => AMOQ là hình bình hành
Mà \(\widehat{AMO}=90^o\) => AMOQ là hình chữ nhật
=> \(\widehat{QAM}=90^o\)
Từ đó ta có ABCD là hình chữ nhật
Đặt CP=CN=x
Áp dụng định lý Pytago cho tam giác ABC vuông tại B, với BM=ON=3
AP=AM=4; AB=AM+BM=7
ta có: CA2=AB2+BC2 <=> (x+4)2=72+(x+3)2
=> x=21 và BC=24
Vậy diện tích hình bình hành ABCD là 7.24=168 (đv diện tích)
- Trường hợp 2: Q nằm ngoài đoạn AD
Cmtt trường hợp 1 ta tính được
\(\widehat{ACB}=90^o;AC=7;BC=24\)
Từ đó ta tính được
SABCD=168 (đv diện tích)
Câu a:
Xét tg vuông AOB có BO=R=OA/2 => ^OAB=30 (góc đối diện với cạnh góc vuông băng nửa cạnh huyền thì bằng 30)
=> ^AOB=90-^OAB=90-30=60
Tương tj c/m đươc ^AOC=60
Câu b:
Từ câu a => ^BOC=^AOB+^AOC=120 => sđ cung BC nhỏ = 120 (sđ góc ở tâm = sđ cung chắn)
=> sđ cung BC lớn = 360-sđ cung BC nhỏ = 360-120=240