Tìm giá trị lớn nhất của biểu thức :
a) A = -4x2 - 12x
b) B = 3 - 4x - x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{64}+x^{32}+1\\ =x^{64}+2x^{32}+1+x^{32}-2x^{32}\\ =\left[\left(x^{32}\right)^2+2\cdot x^{32}\cdot1+1^2\right]-x^{32}\\ =\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\\ =\left(x^{32}-x^{16}+1\right)\left(x^{32}+x^{16}+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left[\left(x^{32}+2x^{16}+1\right)+x^{16}-2x^{16}\right]\\ =\left(x^{32}-x^{16}+1\right)\left[\left(x^{16}+1\right)^2-x^{16}\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^{16}+x^8+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left[\left(x^{16}+2x^8+1\right)-x^8\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left[\left(x^8+1\right)^2-x^8\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^8+x^4+1\right)\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left[\left(x^8+2x^4+1\right)-x^4\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left[\left(x^4+1\right)^2-x^4\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left[\left(x^4+2x^2+1\right)-x^2\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left[\left(x^2+1\right)^2-x^2\right]\\ =\left(x^{32}-x^{16}+1\right)\left(x^{16}-x^8+1\right)\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(x^{64}+x^{32}+1\)
\(=x^{64}+2x^{32}-x^{32}+1\)
\(=\left(x^{64}+2^{32}+1\right)-x^{32}\)
\(=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\)
\(=\left(x^{32}+1-x^{16}\right)\left(x^{32}+1+x^{16}\right)\)
\(\left(x^2-4\right)\left(x^2-10\right)-72\)
\(=\left(x^2-7+3\right)\left(x^2-7-3\right)-72\)
\(=\left(x^2-7\right)^2-9-72\)
\(=\left(x^2-7\right)^2-81\)
\(=\left(x^2-7+9\right)\left(x^2-7-9\right)\)
\(=\left(x^2+2\right)\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
\(\left(x^2-4\right)\left(x^2-10\right)-72\)
\(=x^4-10x^2-4x^2+40-72\)
\(=x^4-14x^2-32\)
\(=\left(x^2-16\right)\left(x^2+2\right)=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
\(x^4+6x^3+7x^2-6x+1\\ =\left(x^4+3x^3-x^2\right)+\left(3x^3+9x^2-x\right)-\left(x^2+3x-1\right)\\ =x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)^2\)
`= x^2(x^2 + x + 1) - x(x^2 + x + 1) + 2024(x^2 + x + 1)`
`= (x^2 - x + 2024)(x^2 + x + 1)`.
a: \(101^2=\left(100+1\right)^2=100^2+2\cdot100\cdot1+1^2\)
=10000+200+1
=10201
b: \(64^2+36^2+72\cdot64\)
\(=64^2+2\cdot64\cdot36+36^2\)
\(=\left(64+36\right)^2=100^2=10000\)
c: \(54^2+46^2-2\cdot54\cdot46=\left(54-46\right)^2=8^2=64\)
d: \(98\cdot102=\left(100-2\right)\left(100+2\right)=100^2-4=9996\)
`a) 2024x - 2024y - 2024x^2 + 4048xy - 2024y^2`
`= ( 2024x - 2024y) - (2024x^2 - 4048xy + 2024y^2)`
`= 2024 (x-y) - 2024 (x^2 - 2xy + y^2)`
`= 2024 (x-y) - 2024 (x-y)^2`
`= 2024 (x-y) (1 - x + y)`
`b) x^2 + 5x - 6`
`= (x^2 - x) + (6x - 6)`
`= x(x-1) + 6(x-1)`
`= (x+6)(x-1)`
`c) 2x^2 + 3x - 5`
`= (2x^2 - 2x) + (5x - 5)`
`= 2x(x - 1) + 5(x-1)`
`= (2x+5)(x-1)`
`d) x^4 + 4 `
`= (x^2)^2 + 2^2`
`= (x^2)^2 + 4x^2 + 2^2 - 4x^2`
`= (x^2 + 2)^2 - (2x)^2 `
`= (x^2 - 2x + 2)(x^2 + 2x+ 2)`
`e) x^5 + x + 1`
`= (x^5 - x^2) + (x^2 + x + 1)`
`= x^2 (x^3 - 1) + (x^2 + x + 1)`
`= x^2 (x-1) (x^2 + x + 1) + (x^2 + x + 1)`
`= (x^3 - x^2 + 1) (x^2 + x + 1) `
a)
A = -4x² - 12x
= -4(x² + 3x)
b)
B = 3 - 4x - x²
= -(x² + 4x - 3)
= -(x² + 4x + 4 - 7)
= -(x + 2)² + 7
Do (x + 2)² ≥ 0
⇒ -(x + 2)² ≤ 0
⇒ -(x + 2)² + 7 ≤ 7
Vậy maxB = 7 khi x = -2