Giải Phương Trình sau:
\(x^2-5x-2\sqrt{3x}+12=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-6x+9\right)+\left(x-2\sqrt{3x}+9\right)=0\) (dk:x>=0)
\(\left(x-3\right)^2+\left(\sqrt{x}-3\right)^2=0\)
=>\(\hept{\begin{cases}x-3=0\\\sqrt{x}-3=0\end{cases}}\)
=>x=3 tmdk
Bài làm
21231 + 345345 = 366576
~ Có thể kết bạn với mình ~
# Chúc bạn học tốt #
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+2c\right)}=\frac{\sqrt{3a\left(b+2c\right)}}{\sqrt{3}}\le\frac{\frac{3a+b+2c}{2}}{\sqrt{3}}=\frac{3a+b+2c}{2\sqrt{3}}\)
Tương tự ta cũng có:\(\sqrt{b\left(c+2a\right)}\le\frac{3b+c+2a}{2\sqrt{3}}\)
\(\sqrt{c\left(a+2b\right)}\le\frac{3c+a+2b}{2\sqrt{3}}\)
Cộng theo vế các BĐT lại ta được:
\(VT\le\frac{3a+b+2c}{2\sqrt{3}}+\frac{3b+c+2a}{2\sqrt{3}}+\frac{3c+a+2b}{2\sqrt{3}}=\frac{6a+6b+6c}{2\sqrt{3}}=\frac{6.4}{2\sqrt{3}}=4\sqrt{3}\)