ngày 01/11/2022, ông tài gửi tiết kiệm 200 triệu đồng tại ngân hang MB Bank chi nhánh lục nam kỳ hạn 1 năm với lãi xuất 5,2% một năm. Cứ hết kì hạn một năm, tiền lãi gộp vào số tiền gốc và lại theo thể thức cũ với lãi xuất không đổi. Với phương thức gửi tiền đó, ngày 01/11/2024 ông tài rút toàn bộ số tiền. Hỏi số tiền của ông tài được nhận về là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 25.{2 + 3.[5. (625.25]}
C = 25.{2 + 3.[5.15625]}
C = 25.{2 + 3.78125}
C = 25.{2 + 234375}
C = 25.234377
C = 5859425
- \(\dfrac{5}{6}\).\(\dfrac{7}{11}\) + \(\dfrac{-5}{11}\).\(\dfrac{4}{6}\) + \(\dfrac{5}{6}\)
= - \(\dfrac{5}{6}\).\(\dfrac{7}{11}\) \(-\dfrac{5}{6}\).\(\dfrac{4}{11}\) + \(\dfrac{5}{6}\) x 1
= - \(\dfrac{5}{6}\).(\(\dfrac{7}{11}\) + \(\dfrac{4}{11}\) - 1)
= - \(\dfrac{5}{6}\).(1 - 1)
= - \(\dfrac{5}{6}\).0
= 0
A = 1.2 + 2.3 + 3.4 + ... + n.(n + 1)
A = \(\dfrac{1}{3}\).(1.2.3 + 2.3.3 + 3.4.3 + ..+n(n+1).3)
A = \(\dfrac{1}{3}\).[1.2.3 + 2.3(4-1) + 3.4.(5-2)+..+n(n+1)(n+2- (n-1))]
A = \(\dfrac{1}{3}\).[1.2.3+2.3.4-1.2.3+3.4.5-2.3.4 +..+n(n+1)(n+2)-(n-1).n.(n+1)]
A = \(\dfrac{1}{3}\)[n.(n+1).(n+2)]
Giải:
\(\sqrt{x}\) ≥ 0 ∀ \(x\)≥ 0
⇒ A = \(\sqrt{x}\) + 2024 ≥ 2024 vậy Amin = 2024 khi \(x\) = 0
Kết luận:
Giá trị nhỏ nhất của biểu thức là 2024 khi \(x=0\)
A = 2 + 22 + 23 + .. + 22024
A = 21 + 22 + 23 + ... + 22024
Xét dãy số 1; 2; 3; ...; 2024, đây là dãy số cách đều với khoảng cách là: 2 - 1= 1
Số số hạng của dãy số là: (2024 - 1) : 1+ 1 = 2024
Vì 2024 : 4 = 506
Vậy nhóm 4 số hạng liên tiếp của A vào nhau ta được:
A = (2 + 22 + 23 + 24) + .. + (22021+ 22022 + 22023 + 22024)
A = (2 + 22 + 23 + 24) + ... + 22020.(2 + 22 + 23 + 24)
A = (2 + 22 + 23 + 24).(20 + ... + 22020)
A = (2+ 4 +8+ 16).(20 + ... + 22020)
A = 30.(20 + ...+ 22020) = 10.3.(20+ ...+ 22020) ⋮ 10 (đpcm)
Câu 1:
a: \(k=\dfrac{y}{x}=\dfrac{3}{5}\)
b: \(\dfrac{y}{x}=\dfrac{3}{5}\)
=>\(y=\dfrac{3}{5}x\)
c: Thay x=-5 vào \(y=\dfrac{3}{5}x\), ta được:
\(y=\dfrac{3}{5}\cdot\left(-5\right)=-3\)
Thay x=15 vào \(y=\dfrac{3}{5}x\), ta được:
\(y=\dfrac{3}{5}\cdot15=9\)
Câu 4: Gọi khối lượng giấy vụn ba chi đội 7A,7B,7C thu được lần lượt là a(kg),b(kg),c(kg)
(Điều kiện:a>0; b>0; c>0)
Khối lượng giấy vụn của ba đội thu được lần lượt tỉ lệ với 9;7;8
=>\(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}\)
Tổng khối lượng là 120kg nên a+b+c=120
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}=\dfrac{a+b+c}{9+7+8}=\dfrac{120}{24}=5\)
=>\(a=5\cdot9=45;b=7\cdot5=35;c=8\cdot5=40\)
vậy: Gọi khối lượng giấy vụn ba chi đội 7A,7B,7C thu được lần lượt là 45(kg),35(kg),40(kg)
Từ 1/11/2022 đến 1/11/2024 là 2024-2022=2 năm
Số tiền ông Tài nhận về sau 2 năm là:
\(200\cdot\left(1+5,2\%\right)^2=221,3408\)(triệu đồng)