K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giải nhanh giúp mình

1 tháng 11

                     Giải:

a; \(\widehat{A}\) + \(\widehat{B}\) + \(\widehat{C}\) = 1800 (tổng ba góc trong một tam giác)

 ⇒ \(\widehat{C}\) = 1800 - \(\widehat{A}\) - \(\widehat{B}\) = 1800 - 900 - 600 = 300

Áp dụng công thức: cos\(\widehat{ABC}\) = \(\dfrac{AB}{BC}\) ⇒ AB = BC.cos\(\widehat{ABC}\)

⇒ AB = 6.cos 600 = 6. \(\dfrac{1}{2}\) = 3

Vậy AB = 3cm 

Áp dụng công thức: sin \(\widehat{ABC}\) = \(\dfrac{AC}{BC}\) ⇒ AC = BC.sin \(\widehat{ABC}\)

⇒ AC = 3.sin 600 = 6.\(\dfrac{\sqrt{3}}{2}\) = 3\(\sqrt{3}\) 

Diện tích tam giác ABC là: 3\(\sqrt{3}\) x 3 : 2 = \(\dfrac{9\sqrt{3}}{2}\) (cm2)

b; Độ dài đường cao AH là: \(\dfrac{9\sqrt{3}}{2}\) .2 : 6 = \(\dfrac{3\sqrt{3}}{2}\)  (cm)

Xét tam giác vuông HAC vuông tại H

Theo pytago ta có: AH2 + HC2 = AC2

⇒ HC2 = AC2 - AH2 = (3\(\sqrt{3}\))2 - (\(\dfrac{3\sqrt{3}}{2}\))2 = \(\dfrac{81}{4}\)

HC = \(\sqrt{\dfrac{81}{4}}\) = \(\dfrac{9}{2}\) (cm)

Kết luận: a; góc C là 300; Độ dài AB; AC; AH; HC lần lượt là:

3cm ; 3\(\sqrt{3}\)cm; \(\dfrac{3\sqrt{3}}{2}\)cm; \(\dfrac{9}{2}\)cm

 

   

 

  

 

 

 

 

2 tháng 11

Hình vẽ đâu em ơi?

Chọn B vì a<b thì -2a>-2b

=>-2a+2023>-2b+2023

NV
24 tháng 10

a.

Do \(AC\perp BD\Rightarrow E\) là trung điểm BD

\(\Rightarrow OA\) là trung trực đoan BD \(\Rightarrow AB=AD\)

\(\widehat{DOA}=\widehat{COI}\) (đối đỉnh) \(\Rightarrow sđ\stackrel\frown{AD}=sđ\stackrel\frown{IC}\Rightarrow AD=IC\)

\(\Rightarrow AB=IC\)

b.

Do AC là đường kính nên \(\widehat{ABC}=\widehat{ADC}=90^0\) (nt chắn nửa đường tròn)

\(\Rightarrow\) Các tam giác ABC và ADC lần lượt vuông tại B và D

Áp dụng định lý Pitago:

\(\left(EA^2+EB^2\right)+\left(EC^2+ED^2\right)=AB^2+CD^2=AD^2+CD^2=AC^2=4R^2\)

c.

Áp dụng Pitago trong tam giác vuông OBE:

\(EB^2=OB^2-OE^2=R^2-\left(\dfrac{2R}{3}\right)^2=\dfrac{5R^2}{9}\Rightarrow BE=\dfrac{R\sqrt{5}}{3}\)

Trong tam giác vuông ABE:

\(AB^2=AE^2+EB^2=\left(R-\dfrac{2R}{3}\right)^2+\dfrac{5R^2}{9}=\dfrac{2R^2}{3}\)

\(\Rightarrow IC^2=AD^2=AB^2=\dfrac{2R^2}{3}\Rightarrow IC=AD=\dfrac{R\sqrt{6}}{3}\)

Trong tam giác vuông ADC:

\(DC=\sqrt{AC^2-AD^2}=\sqrt{\left(2R\right)^2-\dfrac{2R^2}{3}}=\dfrac{R\sqrt{30}}{3}\)

\(BD=2BE=\dfrac{2R\sqrt{5}}{3}\)

\(\Rightarrow IB=\sqrt{ID^2-BD^2}=\sqrt{\left(2R\right)^2-\left(\dfrac{2R\sqrt{5}}{3}\right)^2}=\dfrac{4R}{3}\)

ID là đường kính nên các tam giác IBD và ICD vuông tại B và D

\(S_{ABICD}=S_{\Delta ABD}+S_{\Delta IBD}+S_{\Delta ICD}\)

\(=\dfrac{1}{2}AE.BD+\dfrac{1}{2}IB.BD+\dfrac{1}{2}IC.DC=\dfrac{8R^2\sqrt{5}}{9}\)

23 tháng 10

Help✋✊

23 tháng 10

a) 9x²(2x - 3) = 0

9x² = 0 hoặc 2x - 3 = 0

*) 9x² = 0

x² = 0

x = 0

*) 2x - 3 = 0

2x = 3

loading...

Vậy:

loading...  

23 tháng 10

b; (4\(x+2\))(\(x^2\) + 1) = 0

     \(x^2\) ≥ 0 ⇒ \(x^2\) + 1 ≥ 1 ∀ \(x\)

 ⇒   4\(x+2\) = 0  ⇒ 4\(x=-2\) ⇒ \(x=-\dfrac{1}{2}\)

Vậy \(x=-\dfrac{1}{2}\)