Câu 5. Trong mặt phẳng với hệ tọa độ $Oxy$, cho đường tròn $\left( C \right)$: ${{\left( x+2 \right)}^{2}}+{{\left( y-2 \right)}^{2}}=2$ có tâm $I$ và điểm $M\left( -3;2 \right)$. Lập phương trình đường thẳng $d$ qua $M$ cắt $\left( C \right)$ tại hai điểm phân biệt $A, \, B$ sao cho diện tích tam giác $IAB$ lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn ngẫu nhiên 5 bạn bất kỳ: \(C^5_{13}\)
Chọn ngẫu nhiên 5 bạn lớp 12A và 12B: \(C^5_{10}\)
Chọn ngẫu nhiên 5 bạn lớp 12B và 12C: \(C^5_7\)
Chọn ngẫu nhiên 5 bạn lớp 12A và 12C: \(C^5_9\)
Vậy số cách chọn là: \(C^5_{13}-C^5_{10}-C^5_7-C^5_9\)
Chọn 5 bạn bất kì: \(C_{13}^5\) cách
Chọn 5 bạn chỉ thuộc 1 lớp (có đúng 1 trường hợp là chọn từ 12A): \(C_6^5\) cách
Chọn 5 bạn gồm cả 12A và 12B: \(C_{10}^5-C_6^5\) cách
Chọn 5 bạn gồm cả 12A và 12C: \(C_9^5-C_6^5\) cách
Chọn 5 bạn gồm cả 12B và 12C: \(C_7^5\) cách
Vậy số cách chọn 5 bạn có đủ 3 lớp là:
\(C_{13}^5-\left(C_{10}^5+C_9^5+C_7^5-2C_6^5\right)-C_6^5\)
\(n\left(\Omega\right)=C^9_3.C_3^6.C_3^3=1680\)
Gọi biến cố A "Không có phần nào trong 3 phần có 3 bi cùng màu"
=> \(\overline{A}\) : "Có ít nhất 1 phần có 3 bi cùng màu"
TH1 : Chỉ có 3 bi đỏ trong 1 phần => 2 phần còn lại có 5 bi xanh và 1 bi đỏ
=> Luôn tồn tại 1 phần có 3 bi xanh cùng màu
Tương tự với trường hợp chỉ có 3 bi xanh trong 1 phần
=> \(n\left(\overline{A}\right)=C_4^3.C_5^3.C_3^3=40\)
=> \(P\left(A\right)=1-P\left(\overline{A}\right)=1-\dfrac{40}{1680}=\dfrac{41}{42}\)
Ta có:
- Chọn 3 viên bi cho phần 1 là: \(C^3_9\) cách
- Chọn 3 viên bi cho phần 2 là: \(C^3_6\) cách
- Chọn 3 viên bi cho phần 3 là: 1 cách
Số phần tử không gian mẫu: \(n\left(\Omega\right)=C^3_9\cdot C^3_6\)
Gọi A là biến cố không có phần nào gồm 3 viên bi cùng màu.
Phần 1: 2 đỏ + 1 xanh
Phần 2: 1 đỏ + 2 xanh
Phần 3: 1 đỏ + 2 xanh
\(\Rightarrow n\left(A\right)=C^2_4\cdot C^1_5\cdot C^1_2\cdot C^2_4\cdot\dfrac{3!}{2!}\)
Vậy \(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}\) = ......
Phương trình (d) có dạng :
ax + by + c = 0 (d)
=> vector pháp tuyến \(\overrightarrow{n}\left(a;b\right)\)
Lại có vector pháp tuyến của (d') : \(\overrightarrow{a}\left(1;2\right)\)
(d) qua A(0;1) => b + c = 0 (2)
Ta có \(\cos\left(d,d'\right)=\cos45=\dfrac{\left|a+2b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+2^2}}\)
\(\Leftrightarrow\left(a+2b\right)^2=\dfrac{5}{2}.\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2-8ab-3b^2=0\Leftrightarrow\left(a-3b\right).\left(3a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=-\dfrac{b}{3}\end{matrix}\right.\)\(\left(a;b\ne0\right)\) (1)
Từ (1)(2) thay vào (d) =>
d1 : 3x + y - 1 = 0
d2 : \(-\dfrac{1}{3}x+y-1=0\)
ĐKXĐ : \(m\le2x^2-2x+12\)
\(\sqrt{2x^2-2x-m+12}=x-3\)
\(\Leftrightarrow2x^2-2x-m+12=\left(x-3\right)^2\) (với \(x\ge3\)) (*)
\(\Leftrightarrow x^2+4x+3=m\) (1)
Xét hàm số parabol (P): y = x2 + 4x + 3 và (d) : y = m
Từ (1) ta có bảng biến thiên của (P)
=> Kết hợp ĐKXĐ và (*)
Phương trình ban đầu có nghiệm <=> m \(\ge3\)
Ta có:
Gọi A là biến cố "Trong 5 học sinh được chọn có ít nhất 4 học sinh nữ".
Ta có thể chọn 4 nữ và 1 nam hoặc chon 5 nữ.
Suy ra
Xác suất của biển cố A là:
Ta có:
Gọi A là biến cố "Trong 5 học sinh được chọn có ít nhất 4 học sinh nữ".
Ta có thể chọn 4 nữ và 1 nam hoặc chon 5 nữ.
Suy ra
Xác suất của biển cố A là:
a:
b: Vì a//Δ nên a: x+y+c=0
Thay x=-1 và y=0 vào a, ta được:
c-1+0=0
=>c=1
c: Vì b vuông góc Δ nên b: -x+y+c=0
Thay x=0 và y=3 vào b, ta được:
c-0+3=0
=>c=-3