help mik với mn
tìm x:
a)\(\dfrac{a^3-b^3}{ a^4}x=\dfrac{b^2-a^2}{a^2}\) và \(a\ne0;a\ne b\)
b)\(\dfrac{a^2+b^2-2ab}{a^2+b^2-ab}x=\dfrac{a-b}{a^3+b^3}\) và \(a\ne_-^+b\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=0$
$\Leftrightarrow \frac{yz}{xyz}-\frac{xz}{xyz}-\frac{xy}{xyz}=0$
$\Leftrightarrow \frac{yz-xz-xy}{xyz}=0$
$\Leftrightarrow yz-xz-xy=0$
Đây mới đúng nhé bạn. Đoạn biểu thức sau "chứng minh" của bạn có lẽ bị viết sai rồi.
Để phân số $\frac{a}{b}$ có nghĩa thì $b\neq 0$
a.
ĐKXĐ: \(\left\{\begin{matrix} 3x-3\neq 0\\ 4-4x\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3(x-1)\neq 0\\ -4(x-1)\neq 0\end{matrix}\right.\Leftrightarrow x-1\neq 0\Leftrightarrow x\neq 1\)
b.
ĐKXĐ: \(\left\{\begin{matrix} a+3\neq 0\\ 3a^2+14a+15\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+3\neq 0\\ (3a+5)(a+3)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3a+5\neq 0\\ a+3\neq 0\end{matrix}\right.\Leftrightarrow a\neq \frac{-5}{3}; a\neq -3\)
c.
ĐKXĐ: \(\left\{\begin{matrix} b^3+1\neq 0\\ b^2-b+1\neq 0\\ b+1\neq 0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix} b^3+1\neq 0\\ (b+1)(b^2-b+1)\neq 0\end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b^3+1\neq 0\\ b^3+1\neq 0\end{matrix}\right.\Leftrightarrow b^3\neq -1\Leftrightarrow b\neq -1\)
e.
ĐKXĐ: \(\left\{\begin{matrix} 4x^2-2xy\neq 0\\ 2y^2-4xy\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x(2x-y)\neq 0\\ 2y(y-2x)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ 2x-y\neq 0\\ y-2x\neq 0\\ y\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ x\neq \frac{y}{2}\\ y\neq 0\\ \end{matrix}\right.\)
h.
ĐKXĐ: \(\left\{\begin{matrix} x-5\neq 0\\ x+5\neq 0\\ 25-x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x-5\neq 0\\\ x+5\neq 0\\ -(x-5)(x+5)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x-5\neq 0\\ x+5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 5\\ x\neq -5\end{matrix}\right.\)
Lời giải:
a.
\(x=\frac{b^2-a^2}{a^2}: \frac{a^3-b^3}{a^4}=\frac{(b-a)(b+a)}{a^2}.\frac{a^4}{(a-b)(a^2+ab+b^2)}=\frac{-a^2(a+b)}{a^2+ab+b^2}\)
b.
\(x=\frac{a-b}{a^3+b^3}: \frac{a^2+b^2-2ab}{a^2+b^2-ab}=\frac{a-b}{(a+b)(a^2-ab+b^2)}: \frac{(a-b)^2}{a^2-ab+b^2}\)
\(x=\frac{a-b}{(a+b)(a^2-ab+b^2)}.\frac{a^2-ab+b^2}{(a-b)^2}=\frac{1}{(a+b)(a-b)}=\frac{1}{a^2-b^2}\)