2xy-5x+2y-14=0
giải giúp mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M thuộc tia AB nên M nằm giữa A và B hoặc B nằm giữa A và M
b: Các tia đối nhau gốc N là tia NA và tia NC
Các tia trùng nhau là AN và AC
Lời giải:
Gọi $d=ƯCLN(n-5,n-2)$
$\Rightarrow n-5\vdots d; n-2\vdots d$
$\Rightarrow (n-2)-(n-5)\vdots d$
$\Rightarrow 3\vdots d$
Để ps tối giản thì $d\neq 3$
Điều này xảy ra khi $n-2\not\vdots 3$
$\Leftrightarrow n\neq 3k+2$ với mọi $k$ tự nhiên, $k\neq 0$
G nằm giữa hai điểm E và F
nên GE và GF là hai tia đối nhau
\(2\left[3-9\cdot\left(-3\right)+2\left(5-7\right)\right]-18:\left(-3\right)^2\)
\(=2\left[3+27+2\cdot\left(-2\right)\right]-18:9\)
\(=2\left[30-4\right]-2\)
\(=2\cdot26-2=50\)
=2.(3-9.-3 +2.-2)-18:(-3)2
=2.(3--27+-4)-18:-9
=2.(30+-4) -18:-9
=2.26-18:-9
=52--2
=54
\(\left(\dfrac{2}{3}x-27\right)\cdot\dfrac{3}{2}=-90\)
=>\(\dfrac{2}{3}x-27=-60\)
=>\(\dfrac{2}{3}x=-33\)
=>\(x=-33:\dfrac{2}{3}=-\dfrac{99}{2}\)
\(\left(x-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
=>\(\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{2}\\x-\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
Lời giải:
$4^{2024}-7=(2^2)^{2024}-7=2^{4048}-7$
$=(2^3)^{1349}.2-7=8^{1349}.2-7\equiv (-1)^{1349}.2-7\pmod 9$
$\equiv -2-7\equiv -9\equiv 0\pmod 9$
$\Rightarrow 4^{2024}-7\vdots 9$
a: Trên tia Ox, ta có: OA<OB
nên A nằm giữa O và B
b: A nằm giữa O và B
=>OA+AB=OB
=>AB+2=6
=>AB=6-2=4(cm)
c: Trên tia Ox, ta có OA<OC
nên A nằm giữa O và C
=>OA+AC=OC
=>AC+2=3
=>AC=1(cm)
Trên tia Ox, ta có: OC<OB
nên C nằm giữa O và B
=>OC+CB=OB
=>CB+3=6
=>CB=3(cm)
=>AC<CB
2xy-5x+2y-14=0
=>2xy+2y-5x-5-9=0
=>2y(x+1)-5(x+1)=9
=>(x+1)(2y-5)=9
=>\(\left(x+1\right)\left(2y-5\right)=1\cdot9=\left(-1\right)\cdot\left(-9\right)=\left(-9\right)\cdot\left(-1\right)=9\cdot1=3\cdot3=\left(-3\right)\cdot\left(-3\right)\)
=>\(\left(x+1;2y-5\right)\in\left\{\left(1;9\right);\left(-1;-9\right);\left(-9;-1\right);\left(9;1\right);\left(3;3\right);\left(-3;-3\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;7\right);\left(-2;-2\right);\left(-10;2\right);\left(8;3\right);\left(2;4\right);\left(-4;1\right)\right\}\)