K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=\left(-m\right)^2-4.1\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\)\(\Leftrightarrow m-2\ne0\)\(\Leftrightarrow m\ne2\)

Khi đó \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)(hệ thức Vi-ét)

Độ dài cạnh huyền của tam giác vuông có 2 cgv là \(x_1,x_2\)là \(\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}=\sqrt{m^2-2\left(m-1\right)}=\sqrt{m^2-2m+2}\)

Ta có \(x_1x_2=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)hệ thức lượng trong tam giác vuông.

\(\Leftrightarrow m-1=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)\(\Leftrightarrow\frac{m-1}{\sqrt{m^2-2m+2}}=\frac{1}{\sqrt{5}}\)\(\Leftrightarrow\sqrt{\frac{m^2-2m+1}{m^2-2m+2}}=\sqrt{\frac{1}{5}}\)\(\Leftrightarrow\frac{m^2-2m+1}{m^2-2m+2}=\frac{1}{5}\)\(\Leftrightarrow5m^2-10m+5=m^2-2m+2\)\(\Leftrightarrow4m^2-8m+3=0\)

\(\Delta_1=\left(-8\right)^2-4.4.3=16>0\)

\(\Rightarrow\orbr{\begin{cases}m_1=\frac{-\left(-8\right)+\sqrt{16}}{2.4}=\frac{3}{2}\\m_2=\frac{-\left(-8\right)-\sqrt{16}}{2.4}=\frac{1}{2}\end{cases}}\)

Vậy để [...] thì \(\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{1}{2}\end{cases}}\)

5 tháng 3 2022

Gọi bán kính hình tròn lớn r ; bán kính hình tròn nhỏ : r1

Diện tích vành khuyên : S  = \(r^2.\pi-r_1^2.\pi=\pi\left(r^2-r_1^2\right)\)

Lại có diện tích hình tròn (A;AB) S1 = AB2.\(\pi\) = (BO2 - AO2).\(\pi=\left(r^2-r_1^2\right).\pi\)

=> S = S1 (đpcm) 

NV
5 tháng 3 2022

Đường trỏn nhỏ bán kính OA, đường tròn lớn bán kính OB

Mặt khác do BC là tiếp tuyến đường tròn nhỏ

\(\Rightarrow OA\perp BC\)

\(\Rightarrow A\) là trung điểm BC

\(\Rightarrow AB^2=OB^2-OA^2\)

Diện tích hình vành khuyên:

\(S_1=S_{\left(O;OB\right)}-S_{\left(O;OA\right)}=\pi OB^2-\pi.OA^2=\pi\left(OB^2-OA^2\right)\)

\(S_{\left(A;AB\right)}=\pi.AB^2=\pi\left(OB^2-OA^2\right)\)

\(\Rightarrow S_1=S_{\left(A;AB\right)}\) (đpcm)

8 tháng 3 2022

a, Ta có ^ACB = 900 ( góc nt chắn nửa đường tròn ) 

Xét tứ giác AMDC có 

^AMD + ^ACB = 1800 mà 2 góc này đối 

Vậy tứ giác AMDC nt 1 đường tròn 

b, Ta có ^MCA = ^MDA ( góc nt chắn cung MA của tứ giác ACDM ) (1) 

Lại có ^ACE = ^ABE ( góc nt chắn cung AE ) (2) 

mà ^AEB = 900 ( góc nt chắc nửa đường tròn ) 

Xét tứ giác MDBE có 

^DMB = ^DEB = 900

mà 2 góc này kề, cùng nhìn cạnh BD 

Vậy tứ giác MDBE là tứ giác nt 1 đường tròn 

=> ^MDE = ^MBE ( góc nt chắc cung ME ) (3) 

Từ (1) ; (2) ; (3) suy ra ^MCA = ^ICA 

=> CA là phân giác ^MCI 

c, Xét tam giác DAM và tam giác EAI ta có 

^DAM = ^EAI ( đối đỉnh ) 

^ADM = ^AEI ( so le trong vì BE // DM ) 

Vậy tam giác DAM ~ tam giác EAI (g.g) 

\(\frac{AM}{AI}=\frac{AD}{AE}\Rightarrow AM.AE=AD.AI\)

5 tháng 3 2022

nó có bằng nhé, ko phải đổi dấu

5 tháng 3 2022

bằng sẵn rồi bạn ạ do \(\left|y-1\right|\ge0\)

5 tháng 3 2022

\(A=\left(\dfrac{1}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{y}-\sqrt{x}}\right):\dfrac{2\sqrt{xy}}{x-y}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}}{x-y}:\dfrac{2\sqrt{xy}}{x-y}=\dfrac{-2\sqrt{y}}{2\sqrt{xy}}=\dfrac{-1}{\sqrt{x}}=\dfrac{-\sqrt{x}}{x}\)

b, Ta có \(A=\dfrac{-1}{\sqrt{x}}=1\Leftrightarrow\sqrt{x}=-1\left(voli\right)\)

Vậy pt vô nghiệm 

5 tháng 3 2022

Ta có:\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

\(a) x^2 - 2mx + 2m - 3 = 0.\)

\(∆ ' = m^2 -(2m-3) = m^2 -2m +1 +2 = (m-1) ^2 +2\)

\((m+1) ^2 ≥0 <=> (m+1)^2 +2 ≥2 >0\)

\(=> ∆'>0 <=> PT\) luôn có 2 nghiệm \(PB\) với mọi m

꧁༺๖ۣ๖ۣۜSkyღ๖ۣۜlạnh☯๖ۣۜlùngɠɠ༻꧂

NV
4 tháng 3 2022

Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)

Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)

\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k

\(\Rightarrow\)Pt đã cho có nghiệm

4 tháng 3 2022

em đọc ko hiểu gì hết

Giả sử 4n3-5n-1 là SCP

Có 4n3-5n-1=(n+1)(4n2-4n-1)

Gọi (n+1; 4n2-4n-1)=d   ( d thuộc N)

=> n+1 chia hết cho d và 4n2-4n-1 chia hết cho d

 Mà 4n2-4n-1 =(n+1)(4n-8) + 7 

=> 7 chia hết cho d

=> d = 7 hoặc 1

Có n(n+1) +7 không chia hết cho 7 => n(n+1) không chia hết cho 7 => n+1 không chia hết cho 7 => d khác 7

=> d=1

=> (n+1; 4n2-4n-1) =1

mả 4n3-5n-1=(n+1)(4n2-4n-1) là SCP

=> n+1 và 4n2-4n-1 đồng thời là SCP

=> 4n+4 và 4n2-4n-1 là SCP

=> 4n +4 + 4n2-4n-1 = 4n^2 +3 là SCP

mà 4n2+3 chia 4 dư 3 

=> Vô lý

=> Giả sử sai

=> đccm

26 tháng 7

sai r bạn ơi

 

 

 

xét m=0 thay vào ptr đã cho được x=-1 (loại)

xét m khác 0

ptr đã cho là ptr bậc 2 có 2 nghiệm phân biệt khi ∆ >0

<=>  (m2+m+1)2-4m(m+1) >0

<=> (m2+m)2+2(m2+m) +1 -4(m2+m)>0

<=> (m2+m)2-2(m2+m)+1>0

<=> (m2+m-1)2>0

<=> m2+m-1 khác 0

<=> m khác \(\frac{-1\pm\sqrt{5}}{2}\)

Gọi x1, x2 là hai nghiệm phân biệt của ptr 

=> \(\hept{\begin{cases}x1+x2=\frac{m^2+m+1}{m}\\x1.x2=\frac{m+1}{m}\end{cases}}\)(1)

Vì ptr đã cho có hai nghiệm khác -1 nên 

{x1 # -1 và x2 #-1

=> (x1+1)(x2+1) # 0 và (x1+1) + (x2+1) # 0

=> x1.x2 +x1+x2+1 khác 0 và x1 +x2 +2 khác 0

thay (1) vào 

NV
5 tháng 3 2022

Với \(m=0\) không thỏa mãn

Với \(m\ne0\) pt có 2 nghiệm pb khác -1 khi:

\(\left\{{}\begin{matrix}\Delta=\left(m^2+m+1\right)^2-4m\left(m+1\right)>0\\m+\left(m^2+m+1\right)+m+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m\right)^2-2\left(m^2+m\right)+1>0\\m^2+3m+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m-1\right)^2>0\\m^2+3m+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-1\ne0\\m^2+3m+2\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{-1\pm\sqrt{5}}{2}\\m\ne-2\\m\ne-1;m\ne0\end{matrix}\right.\)