chứng tỏ rằng
\(\dfrac{1}{2^2}\) +\(\dfrac{1}{3^2}^{^{ }}\)+...+\(\dfrac{1}{2023^2}\) < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(13\cdot28-13\cdot12+16\cdot7\)
\(=13\left(28-12\right)+16\cdot7\)
\(=13\cdot16+16\cdot7=16\left(13+7\right)=16\cdot20=320\)
A = \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) + ... + \(\dfrac{1}{7^{100}}\)
7A = 7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{7^{100}}\)
7A - A = (7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) +... + \(\dfrac{1}{7^{99}}\)) - (\(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) + ... + \(\dfrac{1}{7^{100}}\))
6A = 7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + ... + \(\dfrac{1}{7^{99}}\) - \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) - ... - \(\dfrac{1}{7^{100}}\)
6A = (\(\dfrac{1}{7}\) - \(\dfrac{1}{7}\)) + (\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^2}\)) + (\(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^3}\)) +...+(\(\dfrac{1}{7^{99}}\) - \(\dfrac{1}{7^{99}}\))+ (7 - \(\dfrac{1}{7^{100}}\))
6A = 0 + 0 + ... + 0 + 7 - \(\dfrac{1}{7^{100}}\)
6A = 7 - \(\dfrac{1}{7^{100}}\)
A = (7 - \(\dfrac{1}{7^{100}}\)) : 6
A = \(\dfrac{7}{6}\) - \(\dfrac{1}{6.7^{100}}\)
G = \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\) + ... + \(\dfrac{3}{5^{100}}\)
53G = 75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) +... + \(\dfrac{3}{5^{99}}\)
125G - G = (75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\) + ... + \(\dfrac{3}{5^{99}}\)) - (\(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\)+\(\dfrac{3}{5^7}\)+...+\(\dfrac{3}{5^{100}}\))
124G = 75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\)+...+ \(\dfrac{3}{5^{99}}\) - \(\dfrac{3}{5}\) - \(\dfrac{3}{5^4}\) - \(\dfrac{3}{5^7}\) - ... - \(\dfrac{3}{5^{100}}\)
124G = (75 - \(\dfrac{3}{5^{100}}\)) + (\(\dfrac{3}{5}\) - \(\dfrac{3}{5}\)) +(\(\dfrac{3}{5^4}\) - \(\dfrac{3}{5^4}\)) +...+ (\(\dfrac{3}{5^{99}}\) - \(\dfrac{3}{5^{99}}\))
124G = 75 - \(\dfrac{3}{5^{100}}\) + 0 + 0 + ... + 0
124G = 75 - \(\dfrac{3}{5^{100}}\)
G = (75 - \(\dfrac{3}{5^{100}}\)): 124
G = \(\dfrac{75}{124}\) - \(\dfrac{3}{124.5^{100}}\)
Lời giải:
\(2022A=\frac{2022^{2024}+2022}{2022^{2024}+1}=1+\frac{2021}{2022^{2024}+1}< 1+\frac{2021}{2022^{2023}+1}=\frac{2022^{2023}+2022}{2022^{2023}+1}=2022B\)
$\Rightarrow A< B$
Lời giải:
$x+(x+1)+(x+2)+....+(x+30)=1240$
$\underbrace{(x+x+x+...+x)}_{31}+(1+2+3+....+30)=1240$
$31\times x+30\times 31:2=1240$
$31\times x+465=1240$
$31\times x=775$
$x=775:31=25$
a:
ĐKXĐ: x<>3
\(\dfrac{x-3}{2}=\dfrac{72}{x-3}\)
=>\(\left(x-3\right)^2=72\cdot2=144\)
=>\(\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\left(nhận\right)\\x=-9\left(nhận\right)\end{matrix}\right.\)
b: \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\cdot x=\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
=>\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)
=>\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)=\dfrac{50}{49}+\dfrac{50}{48}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
=>\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
=>x=50
\(C=\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{5\cdot3}-\dfrac{1}{3\cdot1}\)
\(=\dfrac{1}{99\cdot97}-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{95\cdot97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(1-\dfrac{1}{97}\right)=\dfrac{1}{97\cdot99}-\dfrac{48}{97}\)
\(=\dfrac{1-48\cdot99}{97\cdot99}=\dfrac{-4751}{9603}\)
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)
...
\(\dfrac{1}{2023^2}< \dfrac{1}{2022\cdot2023}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2022\cdot2023}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}< 1-\dfrac{1}{2023}< 1\)