K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2023

Xếp hàng cho 7 em học sinh: \(7!\) cách

7 em học sinh tạo thành 8 khe trống, xếp 3 thầy cô giáo vào 8 khe trống đó: \(A_8^3\) cách

Vậy có \(7!.A_8^3\) cách xếp sao cho các thầy cô không đứng cạnh nhau

2 tháng 3 2023

f(0)=2014=a.0^2+b.0+c=c => c=2014

f(1)=2015= a.1^2+b.1+c = a+b+c=a+b+2014 => a+b=2015-2014=1 (*)

f(-1)=2017=a.(-1)^2+b.(-1)+c= a-b+c=a-b+2014 =>a-b=2017-2014=3(**)

từ (*) và (**) ta có hệ pt và tính được a=2 và b= -1

=> f(-2) = 2.(-2)^2 + (-1).(-2) +2014=2024

2 tháng 3 2023

F(0) = a.02 + b. 0 + c = 2014 => c = 2014

F(1) = a.12 + b. 1+ 2014 =  2015          =>   a + b = 2015 - 2014 = 1

F(-1) = a.(-1)2 + b.(-1) + 2014 = 2017    = > a - b = 2017 - 2014 = 3

Cộng vế cho vế ta được :        2a  = 1 + 3 = 4=> a = 4/2 =2

                                                  thay a = 2 vào a + b = 1 ta có 

                                                 2 + b = 1 => b = -1

F(x) = 2x2 - x + 2014 

Vậy F(-2) = 2. (-2)2 - (-2) + 2014 = 2024 

NV
1 tháng 3 2023

Xếp 2 cuốn sách lý cạnh nhau: \(2!=2\) cách

Xếp 3 cuốn hóa cạnh nhau: \(3!=6\) cách

Xếp 4 cuốn toán cạnh nhau: \(4!=24\) cách

Xếp bộ 3 toán-lý-hóa: \(3!=6\) cách

Theo quy tắc nhân, ta có số cách xếp thỏa mãn là: 

\(2.6.24.6=1728\) cách

3 tháng 3 2023

Xếp 2 cuốn sách lý cạnh nhau: 2!=2 cách

Xếp 3 cuốn hóa cạnh nhau: 3!=6 cách

Xếp 4 cuốn toán cạnh nhau: 4!=24 cách

Xếp bộ 3 toán-lý-hóa: 3!=6 cách

Theo quy tắc nhân, ta có số cách xếp thỏa mãn là: 

2.6.24.6=1728 cách

NV
27 tháng 2 2023

Hàm là \(y=mx^2-\left(m^2+1\right)x+3\) đúng không nhỉ?

- Với \(m=0\) hàm nghịch biến trên R (không thỏa)

- Với \(m\ne0\) hàm số đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}m>0\\\dfrac{m^2+1}{2m}\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>0\\m^2+1\le2m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)^2\le0\end{matrix}\right.\)

\(\Rightarrow m=1\)

NV
26 tháng 2 2023

a.

\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
26 tháng 2 2023

b.

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)

NV
26 tháng 2 2023

\(x^2-2x-3\) có 2 nghiệm \(x=-1;x=3\) và hệ số \(a=1>0\) nên nhận giá trị dương khi và chỉ khi \(x< -1\) hoặc \(x>3\)

NV
26 tháng 2 2023

\(\Leftrightarrow cos6x-cos8x+2\left(1-cos4x\right)^2+\sqrt{3}sin6x=4-4cos4x\)

\(\Leftrightarrow cos6x-cos8x+2\left(1+cos^24x-2cos4x\right)+\sqrt{3}sin6x=4-4cos4x\)

\(\Leftrightarrow cos6x-cos8x+cos8x+3-4cos4x+\sqrt{3}sin6x=4-4cos4x\)

\(\Leftrightarrow cos6x+\sqrt{3}sin6x=1\)

\(\Leftrightarrow cos\left(6x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow...\)