K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tổng số lít xăng là:

\(105:\left(\dfrac{3}{5}-\dfrac{1}{4}\right)=105:\dfrac{7}{20}=105\times\dfrac{20}{7}=300\left(lít\right)\)

Ta có: \(\widehat{BOC}=\widehat{AOD}\)(hai góc đối đỉnh)

mà \(\widehat{BOC}=45^0\)

nên \(\widehat{AOD}=45^0\)

Ta có: \(\widehat{AOD}+\widehat{DOB}=180^0\)(hai góc  kề bù)

=>\(\widehat{DOB}+45^0=180^0\)

=>\(\widehat{DOB}=135^0\)

Ta có: \(\widehat{DOB}=\widehat{AOC}\)(hai góc đối đỉnh)

mà \(\widehat{DOB}=135^0\)

nên \(\widehat{AOC}=135^0\)

b: (2x+1):2=12:3

=>(2x+1):2=4

=>2x+1=2*4=8

=>2x=7

=>\(x=\dfrac{7}{2}\)

d: \(\dfrac{2x-14}{3}=\dfrac{12}{9}\)

=>\(\dfrac{2x-14}{3}=\dfrac{4}{3}\)

=>2x-14=4

=>2x=18

=>x=9

Gọi số cần tìm là: 3abc3

Ta có 3abc3 - abc = 37779

30000 + abc * 10 +3 - abc =37779

10abc - abc = 37779 - 30000 - 3

9abc = 7776

abc = 864 

Vậy số cần tìm là: 38643

a: tia OB nằm giữa hai tia OA và OC

=>\(\widehat{AOB}+\widehat{BOC}=\widehat{AOC}\)

=>\(\widehat{BOC}=165^0-20^0=145^0\)

b: Ta có: \(\widehat{BOC}+\widehat{COD}=180^0\)(hai góc kề bù)

=>\(\widehat{COD}+145^0=180^0\)

=>\(\widehat{COD}=35^0\)

ĐKXĐ: \(x\notin\left\{7;-1945\right\}\)

\(\dfrac{19x+8}{x-7}\cdot\dfrac{5x-9}{x+1945}+\dfrac{19x+8}{7-x}\cdot\dfrac{4x-2}{x+1945}\)

\(=\dfrac{19x+8}{x-7}\cdot\dfrac{5x-9}{x+1945}-\dfrac{19x+8}{x-7}\cdot\dfrac{4x-2}{x+1945}\)

\(=\dfrac{19x+8}{x-7}\cdot\dfrac{5x-9-4x+2}{x+1945}\)

\(=\dfrac{19x+8}{x+1945}\cdot\dfrac{x-7}{x-7}=\dfrac{19x+8}{x+1945}\)

25 tháng 6
  verified Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì điểm K nằm trên đường tròn ngoại tiếp ΔBDE nên tứ giác DKBE nội tiếp đường tròn

Suy ra 𝐵𝐸𝐾^=𝐵D𝐾^ (2 góc nội tiếp cùng chắn cung BK)

Hay 𝐴𝐸𝐾^=FD𝐾^

Vì tứ giác DKFC nội tiếp đường tròn nên 𝐹𝐶𝐾^=FD𝐾^

Suy ra 𝐴𝐸𝐾^=FC𝐾^, hay 𝐴𝐸𝐾^=AC𝐾^

Do đó tứ giác AKCE nội tiếp đường tròn

Suy ra 𝐾AE^+𝐾𝐶𝐸^=180∘

Mà 𝐾𝐶D^+𝐾𝐶𝐸^=180∘ (hai góc kề bù)

Do đó 𝐾AE^=𝐾𝐶D^ hay 𝐾AB^=𝐾𝐶D^

Do tứ giác BKDE nội tiếp đường tròn nên 𝐾𝐷E^+𝐾𝐵𝐸^=180∘

Mà 𝐾𝐵𝐴^+𝐾𝐵𝐸^=180∘ (hai góc kề bù)

Do đó 𝐾𝐷E^=𝐾𝐵𝐴^ hay KBA^=𝐾𝐷𝐶^

Xét ΔDKC và ΔBKA có:

KBA^=𝐾𝐷𝐶^ (chứng minh trên)

𝐾AB^=𝐾𝐶D^ (chứng minh trên)

Suy ra (g.g)

Do đó 𝐾𝐶𝐾A=𝐾D𝐾𝐵

Hay 𝐾𝐶𝐾𝐷=𝐾𝐴𝐾𝐵

Ta có: 𝐵𝐾D^=𝐷𝐾𝐶^+𝐵𝐾𝐶^𝐴𝐾𝐶^=𝐵𝐾𝐴^+𝐵𝐾𝐶^

Mà 𝐷𝐾𝐶^=𝐵𝐾A^, suy ra 𝐷𝐾𝐵^=𝐶𝐾A^

Xét ΔKBD và ΔKAC có:

𝐷𝐾𝐵^=𝐶𝐾A^ (chứng minh trên)

𝐾𝐶𝐾𝐷=𝐾𝐴𝐾𝐵 (chứng minh trên)

Suy ra (c.g.c)

Do đó 𝐾𝐵D^=𝐾𝐴𝐶^

Hay 𝐾𝐵𝐹^=𝐾𝐴𝐹^

Suy ra tứ giác AKFB nội tiếp đường tròn

Do đó 𝐵𝐾𝐹^=BAF^ (2 góc nội tiếp chắn cung BF)

Suy ra 𝐵𝐾𝐹^=𝐵𝐴𝐶^=𝐵D𝐶^ (do 𝐵𝐴𝐶^,𝐵D𝐶^ cùng chắn cung BC)                   (1)

Ta có: 𝐵D𝐶^=𝐹D𝐶^=𝐹𝐾𝐶^ (cùng chắn cung FC)                       (2)

Xét ΔBMC có 𝑀𝐵𝐶^+𝑀𝐶𝐵^+𝐵𝑀𝐶^=180∘ (tổng ba góc trong một tam giác)

Mà 𝑀𝐵𝐶^=𝐵𝐴𝐶^,𝑀𝐶𝐵^=𝐵D𝐶^(Góc tạo bởi tiếp tuyến và dây cung)

Suy ra 𝐵𝐴𝐶^+𝐵𝐷𝐶^+𝐵𝑀𝐶^=180∘                                              (3)

Từ (1); (2) và (3) suy ra 𝐵𝐾𝐹^+𝐹𝐾𝐶^+𝐵𝑀𝐶^=180∘

Hay 𝐵𝐾𝐶^+𝐵𝑀𝐶^=180∘

Do đó tứ giác BKCM nội tiếp đường tròn

b) Ta có 𝐵𝐾𝐹^=𝐵D𝐶^ (chứng minh câu a)

Suy ra 𝐵𝐾𝐹^=𝐵DE^=𝐵𝐾𝐸^ (Do tứ giác DKBE nội tiếp đường tròn)

Mà 2 điểm F và E nằm cùng phía so với BK

Suy ra 3 điểm K; F; E thẳng hàng

Hay F nằm trên KE                                                   (*)

Vì 𝐵𝐾𝐹^=𝐵𝐴𝐶^,𝐶𝐾𝐹^=𝐵D𝐶^,𝐵𝐴𝐶^=𝐵D𝐶^

Nên 𝐵𝐾𝐹^=𝐶𝐾𝐹^

Suy ra 𝐵𝐾𝐸^=𝐶𝐾𝐸^ (Do K; F; E thẳng hàng)

Do đó KE là phân giác của 𝐵𝐾𝐶^                     (4)

Xét (O) có MB, MC là 2 tiếp tuyến cắt nhau tại M

Nên MB = MC

Do đó tam giác MBC cân tại M

Suy ra 𝑀𝐵𝐶^=𝑀𝐶𝐵^

Xét tứ giác BKCM nội tiếp đường tròn có 𝑀𝐵𝐶^=𝑀𝐾𝐶^,𝑀𝐶𝐵^=𝑀𝐾𝐵^

Suy ra 𝑀𝐾𝐶^=𝑀𝐾𝐵^

Do đó KM là phân giác của 𝐵𝐾𝐶^                                         (5)

Từ (4) và (5) suy ra 3 điểm K; M; E thẳng hàng hay M nằm trên KE (**)

Từ (*) và (**) suy ra 3 điểm E; M; F thẳng hàng

Vậy 3 điểm E; M; F thẳng hàng.

25 tháng 6

Ta có 𝑥2−𝑦2+4𝑥−4𝑦=𝑥−𝑦𝑥+𝑦+4𝑥−𝑦

25 tháng 6

đây nhá cho mình đnx nha

 

người đó mua số kg là:

4x250+2x500=2000(g)=2kg

người đó mua số kg là:

4x250+2x500=2000(g)=2kg

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔAEB=ΔAFC

=>BE=CF

b: ΔAEB=ΔAFC

=>AE=AF

Xét ΔAFH vuông tại F và ΔAEH vuông tại E có

AH chung

AF=AE

Do đó: ΔAFH=ΔAEH

=>HE=HF

=>ΔHEF cân tại H

c: Xét ΔABC có \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

nên EF//BC

d: Ta có: AE=AF

=>A nằm trên đường trung trực của EF(1)

Ta có: HE=HF

=>H nằm trên đường trung trực của EF(2)

Từ (1),(2) suy ra AH là đường trung trực của EF

=>AH\(\perp\)EF