so sánh a và b
a=102021+1/102020
b=102022+1/102021+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-3/7 + 17/26 - (2/13 - 3/7)
= -3/7 + 17/26 - 2/13 + 3/7
= (-3/7 + 3/7) + (17/26 - 2/13)
= 0 + 13/26
= 1/2
\(\dfrac{5}{2.7}+\dfrac{16}{7.9}-\dfrac{2}{9.11}-\dfrac{29}{11.18}\)
\(=\dfrac{5-2}{2.7}+\dfrac{7+9}{7.9}-\dfrac{11-9}{9.11}-\dfrac{11+18}{11.18}\)
\(=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{11}-\dfrac{1}{11}-\dfrac{1}{18}\)
\(=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{4}{9}\)
A = \(\dfrac{5}{2.7}\) + \(\dfrac{16}{7.9}\) - \(\dfrac{2}{9.11}\) - \(\dfrac{29}{11.18}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{11}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{4}{9}\)
\(\dfrac{-3}{21}\) + \(\dfrac{6}{42}\) - \(\dfrac{-7}{49}\) = \(\dfrac{-1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{-1}{7}\) = \(\dfrac{1}{7}\)
Lời giải:
\((1+\frac{1}{3})(1+\frac{1}{8})(1+\frac{1}{15})...(1+\frac{1}{99})\\ =\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{100}{99}\\ =\frac{2^2.3^2.4^2....10^2}{1.3.2.4.3.5....9.11}=\frac{(2.3.4..10)(2.3.4..10)}{(1.2.3...9)(3.4.5...11)}=10.\frac{2}{11}=\frac{20}{11}\)
A = \(\dfrac{7}{18}\).[ - \(\dfrac{12}{23}\) - \(\dfrac{4}{15}\)] + \(\dfrac{7}{18}\).[\(\dfrac{8}{30}\)+ \(\dfrac{25}{23}\)]
A =- \(\dfrac{7}{18}\).\(\dfrac{12}{23}\) - \(\dfrac{7}{18}.\dfrac{4}{15}\) + \(\dfrac{7}{18}\).\(\dfrac{8}{30}\) + \(\dfrac{7}{18}\).\(\dfrac{25}{23}\)
A = \(\dfrac{7}{18}\).(\(\dfrac{25}{23}\) - \(\dfrac{12}{23}\)) - (\(\dfrac{7}{18}\).\(\dfrac{4}{15}\) - \(\dfrac{7}{18}\).\(\dfrac{4}{15}\))
= \(\dfrac{7}{18}\).\(\dfrac{13}{23}\) - 0
= \(\dfrac{91}{414}\)
\(\dfrac{x}{25}=\dfrac{-3}{7}\cdot\dfrac{7}{6}\)
\(\Rightarrow\dfrac{x}{25}=\dfrac{-3\cdot7}{7\cdot6}\)
\(\Rightarrow\dfrac{x}{25}=\dfrac{-1}{2}\)
\(\Rightarrow x=-\dfrac{25}{2}\)
Lời giải:
\(A=\frac{10^{2021}+1}{10^{2020}+1}=\frac{10(10^{2020}+1)-9}{10^{2020}+1}=10-\frac{9}{10^{2020}+1}<10-\frac{9}{10^{2021}+1}=\frac{10^{2022}+1}{10^{2021}+1}=B\)
Vậy $A<B$