Bài 8:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
\(1)\left(x+y\right)^2-\left(x-y\right)^2\\ =\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\\ =x^2+2xy+y^2-x^2+2xy-y^2\\ =4xy\\ 2)\left(2x+3\right)^2-3x\left(2x+1\right)\\ =\left(4x^2+12x+9\right)-\left(6x^2+3x\right)\\ =4x^2+12x+9-6x^2-3x\\ =-2x^2+9x+9\\ 3)\left(4-2x\right)\left(4+2x\right)-4x\left(2x+3\right)\\ =\left[4^2-\left(2x\right)^2\right]-\left(8x^2+12x\right)\\ =16-4x^2-8x^2-12x\\ =16-12x^2-12x\\ 4)2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2-2x^2\\ =2\left(x^2-y^2\right)+\left(x^2+2xy+y^2\right)-2x^2\\ =2x^2-2y^2+x^2+2xy+y^2-2x^2\\ =x^2+2xy-y^2\)
Bài 8:
1: \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y=4xy\)
2: \(\left(2x+3\right)^2-3x\left(2x+1\right)\)
\(=4x^2+12x+9-6x^2-3x\)
\(=-2x^2+9x+9\)
3: \(\left(4-2x\right)\left(4+2x\right)-4x\left(2x+3\right)\)
\(=4^2-\left(2x\right)^2-8x^2-12x\)
\(=16-4x^2-8x^2-12x=-12x^2-12x+16\)
4: \(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2-2x^2\)
\(=2\left(x^2-y^2\right)+x^2+2xy+y^2-2x^2\)
\(=2x^2-2y^2-x^2+2xy+y^2=x^2+2xy-y^2\)
5: \(\left(3x+4\right)\left(3x-2\right)-\left(3x+1\right)^2\)
\(=9x^2-6x+12x-8-9x^2-6x-1\)
=-9
6: \(4x\left(x-3\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=4x^2-12x-\left(4x^2-1\right)\)
\(=4x^2-12x-4x^2+1=-12x+1\)
7: \(\dfrac{3}{2}x^2-\left(x-1\right)\left(x+1\right)+3x\)
\(=\dfrac{3}{2}x^2+3x-\left(x^2-1\right)\)
\(=\dfrac{3}{2}x^2+3x-x^2+1=\dfrac{1}{2}x^2+3x+1\)
8: \(2\left(5-x\right)\left(5+x\right)-\left(2x+3\right)^2-x\left(3x+2\right)\)
\(=2\left(25-x^2\right)-4x^2-12x-9-3x^2-2x\)
\(=2\left(25-x^2\right)-7x^2-14x-9\)
\(=50-2x^2-7x^2-14x-9=-9x^2-14x+41\)
11.
a)
\(A=\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\=\left(x+1\right)\left(x^2-x\cdot1+1^2\right)-\left(x-1\right)\left(x^2+x\cdot1+1^2\right)\\ =\left(x^3+1^3\right)-\left(x^3-1^3\right)\\ =x^3+1-x^3+1\\ =2\)
=> Giá trị của bt không phụ thuộc vào biến
b)
\(B=\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+10\\ =\left(2x+6\right)\left[\left(2x\right)^2-2x\cdot6+6^2\right]-8x^3+10\\ =\left[\left(2x\right)^3+6^3\right]-8x^3+10\\ =\left(8x^3+216\right)-8x^3+10\\ =8x^3+216-8x^3+10\\ =226\)
=> Giá trị của bt không phụ thuộc vào biến
6.
\(a)\left(x+1\right)^3=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=x^3+3x^2+3x+1\\ b)\left(2x+3\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3=8x^3+36x^2+54x+27\\ c)\left(x^2+2\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2+2^3=x^6+6x^4+12x^2+8\\ d)\left(2x+5y\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot5y+3\cdot2x\cdot\left(5y\right)^2+\left(5y\right)^3=8x^3+60x^2y+150xy^2+125y^3\\ e.\left(x+\dfrac{1}{2}\right)^3=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3=x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\\ g.\left(\dfrac{1}{2}x+y^2\right)=\left(\dfrac{1}{2}x\right)^3+3\cdot\left(\dfrac{1}{2}x\right)^2\cdot y^2+3\cdot\dfrac{1}{2}x\cdot\left(y^2\right)^2+\left(y^2\right)^3\\ =\dfrac{x^3}{8}+\dfrac{3}{4}x^2y^2+\dfrac{3}{2}xy^4+y^6\\ h.\left(x^2-2\right)^3=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2-2^3=x^6-6x^4+12x^2-8\)
\(d.x^{11}+x^7+1\\ =x^{11}-x^2+x^7-x+x^2+x+1\\ =x^2\left(x^9-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\\ =x^2\left(x^3-1\right)\left(x^6+x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\\ =x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^6+x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\\=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^6+x^3+1\right)+x\left(x-1\right)\left(x^3+1\right)+1\right]\\ =\left(x^2+x+1\right)\left[\left(x^3-x^2\right)\left(x^6+x^3+1\right)+\left(x^2-x\right)\left(x^3+1\right)+1\right]\\ =\left(x^2+x+1\right)\left(x^9+x^6+x^3-x^8-x^5-x^2+x^5+x^2-x^4-x+1\right)\\ =\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)
\(e.x^8+x+1\\ =x^8-x^2+x^2+x+1\\ =x^2\left(x^6-1\right)+\left(x^2+x+1\right)\\ =x^2\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\\ =x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^3+1\right)+1\right]\\ =\left(x^2+x+1\right)\left[\left(x^3-x^2\right)\left(x^3+1\right)+1\right]\\ =\left(x^2+x+1\right)\left(x^6+x^3-x^5-x^2+1\right)\)
Bài 1:
a) $x^2+6x+9$
$=x^2+2.x.3+3^2$
$=(x+3)^2$
b) $9x^2-6x+1$
$=(3x)^2-2.3x.1+1^2$
$=(3x-1)^2$
c) $x^2y^2+xy+\frac14$
$=(xy)^2+2.xy.\frac12+\left(\frac12\right)^2$
$=\left(xy+\frac12\right)^2$
d) $(x-y)^2+6(x-y)+9$
$=(x-y)^2+2.(x-y).3+3^2$
$=(x-y+3)^2$
Bài 2:
a) $-x^3+3x^2-3x+1$
$=1^3-3.1^2.x+3.1.x^2-x^3$
$=(1-x)^3$
b) $x^3+x^2+\frac13 x+\frac{1}{27}$
$=x^3+3.x^2.\frac13+3.x.\left(\frac13\right)^2+\left(\frac13\right)^3$
$=\left(x+\frac13\right)^3$
c) $x^6-3x^4y+3x^2y^2-y^3$
$=(x^2)^3-3.(x^2)^2.y+3.x^2.y^2-y^3$
$=(x^2-y)^3$
d) $(x-y)^3+(x-y)^2+\frac13 (x-y)+\frac{1}{27}$
$=(x-y)^3+3.(x-y)^2.\frac13+3.(x-y).\left(\frac13\right)^2+\left(\frac13\right)^3$
$=\left(x-y+\frac13\right)^3$
Bài 3:
a) $x^3+27$
$=x^3+3^3$
$=(x+3)(x^2-x.3+3^2)$
$=(x+3)(x^2-3x+9)$
b) $x^3-\frac18$
$=x^3-\left(\frac12\right)^3$
$=\left(x-\frac12\right)\left[x^2-x.\frac12+\left(\frac12\right)^2\right]$
$=\left(x-\frac12\right)\left(x^2-\frac12 x+\frac14\right)$
c) $8x^3+y^3$
$=(2x)^3+y^3$
$=(2x+y)[(2x)^2-2x.y+y^2]$
$=(2x+y)(4x^2-2xy+y^2)$
d) $8x^3-27y^3$
$=(2x)^3-(3y)^3$
$=(2x-3y)[(2x)^2+2x.3y+(3y)^2]$
$=(2x-3y)(4x^2+6xy+9y^2)$
Bài 4:
a) \(101^2=\left(100+1\right)^2\)
\(=100^2+2.100.1+1^2\)
\(=10000+200+1=10201\)
b) \(75^2-50.75+25^2\)
\(=75^2-2.75.25+25^2\)
\(=\left(75-25\right)^2\)
\(=50^2=2500\)
c) \(103.97\)
\(=\left(100+3\right).\left(100-3\right)\)
\(=100^2-3^2\\ =10000-9=9991\)
Bài 5:
a) \(\left(x+3y\right)^2-\left(x-3y\right)^2\)
\(=\left(x+3y-x+3y\right)\left(x+3y+x-3y\right)\\ =6y.2x=12xy\)
b) \(Q=\left(x-y\right)^2-4\left(x-y\right)\left(x+2y\right)+4\left(x+2y\right)^2\)
\(=\left(x-y\right)^2-2.\left(x-y\right).2\left(x+2y\right)+\left[2\left(x+2y\right)\right]^2\\ =\left[\left(x-y\right)-2\left(x+2y\right)\right]^2\\ =\left(x-y-2x-4y\right)^2\\ =\left(-x-5y\right)^2\)
c) \(A=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(=\left(x+2+x-2\right)\left[\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\right]-2x\left(x^2+12\right)\\ =2x\left(x^2+4x+4-x^2+4+x^2-4x+4\right)-2x\left(x^2+12\right)\\ =2x\left(x^2+12\right)-2x\left(x^2+12\right)=0\)
d) \(B=\left(xy+2\right)^3-6\left(xy+2\right)^2+12\left(xy+2\right)-8\)
\(=\left(xy+2\right)^3-3.\left(xy+2\right)^2.2+3.\left(xy+2\right).2^2-2^3\\ =\left(xy+2-2\right)^3\\ =\left(xy\right)^3=x^3y^3\)
e) \(A=\left(x-3\right)\left(x^2+3x+9\right)-\left(x^3+3\right)\)
\(=\left(x-3\right)\left(x^2+x.3+3^2\right)-x^3-3\\ =x^3-3^3-x^3-3\\ =-27-3=-30\)
Bài 6:
\(a,VT=\left(a-b\right)^2=a^2-2ab+b^2\\ =\left(a^2+2ab+b^2\right)-4ab\\ =\left(a+b\right)^2-4ab=VP\\ b,VT=\left(x+y\right)^2+\left(x-y\right)^2\\ =x^2+2xy+y^2+x^2-2xy+y^2\\ =2x^2+2y^2\\ =2\left(x^2+y^2\right)=VP\\ c,VT=\left(x+y\right)^2-\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]\\ =\left(x+y-x+y\right)\left(x+y+x-y\right)\\ =2y.2x=4xy=VP\\ d,VT=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)\\ =\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\\ =\left[\left(x-y\right)+\left(x+y\right)\right]^2\\ =\left(x-y+x+y\right)^2\\ =\left(2x\right)^2=4x^2=VP\)
Bài 14:
1: \(A=x^2-x+3\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>\(x=\dfrac{1}{2}\)
2: \(B=x^2+x+1\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{1}{2}=0\)
=>\(x=-\dfrac{1}{2}\)
3: \(C=x^2-4x+1\)
\(=x^2-4x+4-3\)
\(=\left(x-2\right)^2-3>=-3\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
4: \(D=x^2-5x+7\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{5}{2}=0\)
=>\(x=\dfrac{5}{2}\)
5: \(E=x^2+2x+2\)
\(=x^2+2x+1+1=\left(x+1\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
6: \(F=x^2-3x+1\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{5}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)
=>\(x=\dfrac{3}{2}\)
7: \(G=x^2+3x+3\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi x+3/2=0
=>x=-3/2
8: \(H=3x^2+3-5x\)
\(=3\left(x^2-\dfrac{5}{3}x+1\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{11}{36}\right)\)
\(=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>=\dfrac{11}{12}\forall x\)
Dấu '=' xảy ra khi x-5/6=0
=>x=5/6
9: \(I=4x+2x^2+3\)
\(=2\left(x^2+2x+\dfrac{3}{2}\right)\)
\(=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)
\(=2\left(x+1\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
10: \(K=4x^2+3x+2\)
\(=\left(2x\right)^2+2\cdot2x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{23}{16}\)
\(=\left(2x+\dfrac{3}{4}\right)^2+\dfrac{23}{16}>=\dfrac{23}{16}\forall x\)
Dấu '=' xảy ra khi 2x+3/4=0
=>x=-3/8
11: M=(x-1)(x-3)+11
\(=x^2-4x+3+11=x^2-4x+14\)
\(=x^2-4x+4+10=\left(x-2\right)^2+10>=10\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
12: \(N=\left(x-3\right)^2+\left(x-2\right)^2\)
\(=x^2-6x+9+x^2-4x+4\)
\(=2x^2-10x+13\)
\(=2\left(x^2-5x+\dfrac{13}{2}\right)=2\left(x^2-5x+\dfrac{25}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x-\dfrac{5}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\forall x\)
Dấu '=' xảy ra khi x-5/2=0
=>x=5/2
Bài 5:
Áp dụng BĐT Cô si cho 2 số: \(\sqrt{\dfrac{b+c}{a}}\) và 1
Có:
\(\sqrt{\dfrac{b+c}{a}}.1\le\dfrac{\left(\dfrac{b+c}{a}+1\right)}{2}\)
\(\Rightarrow\sqrt{\dfrac{b+c}{a}}\le\dfrac{a+b+c}{2a}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Tương tự: \(\sqrt{\dfrac{b}{a+c}}\ge\dfrac{2b}{a+b+c}\)
\(\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\Rightarrow VT\ge2\Rightarrow VT>1\)
Bài 2:
1: \(\dfrac{1}{5^{x-1}}+3\cdot5^{2-x}=\dfrac{16}{125}\)
=>\(\dfrac{1}{5^x\cdot\dfrac{1}{5}}+3\cdot\dfrac{25}{5^x}=\dfrac{16}{125}\)
=>\(\dfrac{5}{5^x}+\dfrac{75}{5^x}=\dfrac{16}{125}\)
=>\(\dfrac{80}{5^x}=\dfrac{16}{125}\)
=>\(5^x=80\cdot\dfrac{125}{16}=5\cdot125=5^4\)
=>x=4
2: \(\left(3-\left|x-\dfrac{1}{2}\right|\right)\left(\dfrac{8}{15}-\dfrac{1}{5}\right)+\dfrac{2}{3}=1\)
=>\(\left(3-\left|x-\dfrac{1}{2}\right|\right)\cdot\dfrac{1}{3}=1-\dfrac{2}{3}=\dfrac{1}{3}\)
=>\(3-\left|x-\dfrac{1}{2}\right|=1\)
=>\(\left|x-\dfrac{1}{2}\right|=3-1=2\)
=>\(\left[{}\begin{matrix}x-\dfrac{1}{2}=2\\x-\dfrac{1}{2}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2+\dfrac{1}{2}=\dfrac{5}{2}\\x=-2+\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)
Bài 3:
1: Gọi ba phần được chia lần lượt là x,y,z
Ba phần tỉ lệ với 2/5;3/4;1/6 nên \(\dfrac{x}{\dfrac{2}{5}}=\dfrac{y}{\dfrac{3}{4}}=\dfrac{z}{\dfrac{1}{6}}\)
=>\(2,5x=\dfrac{4}{3}y=6z\)
=>\(15x=8y=36z\)
=>\(\dfrac{15x}{360}=\dfrac{8y}{360}=\dfrac{36z}{360}\)
=>\(\dfrac{x}{24}=\dfrac{y}{45}=\dfrac{z}{10}=k\)
=>x=24k; y=45k; z=10k
\(x^2+y^2+z^2=24309\)
=>\(\left(24k\right)^2+\left(45k\right)^2+\left(10k\right)^2=24309\)
=>\(k^2=9\)
=>\(\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)
TH1: k=3
=>\(x=24\cdot3=72;y=45\cdot3=135;z=10\cdot3=30\)
TH2: k=-3
=>\(x=24\cdot\left(-3\right)=-72;y=45\cdot\left(-3\right)=-135;z=10\cdot\left(-3\right)=-30\)
a: Xét ΔIAM vuông tại M và ΔIAQ vuông tại Q có
AI chung
\(\widehat{MAI}=\widehat{QAI}\)
Do đó: ΔIAM=ΔIAQ
b: ta có: ΔIAM=ΔIAQ
=>IM=IQ
Xét ΔBMI vuông tại M và ΔBNI vuông tại N có
BI chung
\(\widehat{MBI}=\widehat{NBI}\)
Do đó: ΔBMI=ΔBNI
=>IM=IN
mà IM=IQ
nên IM=IN=IQ
a: Xét ΔIAM vuông tại M và ΔIAQ vuông tại Q có
AI chung
\(\widehat{MAI}=\widehat{QAI}\)
Do đó: ΔIAM=ΔIAQ
b: ta có: ΔIAM=ΔIAQ
=>IM=IQ
Xét ΔBMI vuông tại M và ΔBNI vuông tại N có
BI chung
\(\widehat{MBI}=\widehat{NBI}\)
Do đó: ΔBMI=ΔBNI
=>IM=IN
mà IM=IQ
nên IM=IN=IQ
Bài 8:
1: \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y=4xy\)
2: \(\left(2x+3\right)^2-3x\left(2x+1\right)\)
\(=4x^2+12x+9-6x^2-3x\)
\(=-2x^2+9x+9\)
3: \(\left(4-2x\right)\left(4+2x\right)-4x\left(2x+3\right)\)
\(=4^2-\left(2x\right)^2-8x^2-12x\)
\(=16-4x^2-8x^2-12x=-12x^2-12x+16\)
4: \(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2-2x^2\)
\(=2\left(x^2-y^2\right)+x^2+2xy+y^2-2x^2\)
\(=2x^2-2y^2-x^2+2xy+y^2=x^2+2xy-y^2\)
5: \(\left(3x+4\right)\left(3x-2\right)-\left(3x+1\right)^2\)
\(=9x^2-6x+12x-8-9x^2-6x-1\)
=-9
6: \(4x\left(x-3\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=4x^2-12x-\left(4x^2-1\right)\)
\(=4x^2-12x-4x^2+1=-12x+1\)
7: \(\dfrac{3}{2}x^2-\left(x-1\right)\left(x+1\right)+3x\)
\(=\dfrac{3}{2}x^2+3x-\left(x^2-1\right)\)
\(=\dfrac{3}{2}x^2+3x-x^2+1=\dfrac{1}{2}x^2+3x+1\)
8: \(2\left(5-x\right)\left(5+x\right)-\left(2x+3\right)^2-x\left(3x+2\right)\)
\(=2\left(25-x^2\right)-4x^2-12x-9-3x^2-2x\)
\(=2\left(25-x^2\right)-7x^2-14x-9\)
\(=50-2x^2-7x^2-14x-9=-9x^2-14x+41\)
Giúp tớ nhanh vs ạ