Tìm số nguyên x,y thỏa mãn:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+y^2-4y+3=0\)
\(\Leftrightarrow x^2+\left(y-2\right)^2=1\)
Xét 2TH:
TH1: \(\left\{{}\begin{matrix}x=1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x=0\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
Vậy có các cặp số nguyên \(\left(1;2\right),\left(3;0\right)\) thỏa mãn đề bài.
b) \(x^2+4y^2-2x+12y+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+3\right)^2=9\)
Ta thấy \(2x+3\) là số lẻ nên ta chỉ có 1 TH duy nhất là
\(\left\{{}\begin{matrix}2y+3=9\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=1\end{matrix}\right.\)
Vậy cặp số nguyên \(\left(1;3\right)\) thỏa mãn ycbt.
a: \(x^2+y^2-4y+3=0\)
=>\(x^2-1+\left(y^2-4y+4\right)=0\)
=>\(\left(x-1\right)\left(x+1\right)+\left(y-2\right)^2=0\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)=0\\\left(y-2\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\in\left\{1;-1\right\}\\y=2\end{matrix}\right.\)
b: \(x^2+4y^2-2x+12y+1=0\)
=>\(x^2-2x+1+4y^2+12y=0\)
=>\(\left(x-1\right)^2+4y\left(y+3\right)=0\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\4y\left(y+3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y\in\left\{0;-3\right\}\end{matrix}\right.\)
\(\dfrac{1}{2}x^2+\dfrac{1}{3}x^3-\dfrac{5}{2}x^2-\dfrac{7}{3}\\ =\dfrac{1}{3}x^3+x^2\left(\dfrac{1}{2}-\dfrac{5}{2}\right)-\dfrac{7}{3}\\ =\dfrac{1}{3}x^3-2x^2-\dfrac{7}{3}\)
\(-\dfrac{x^2}{2}+\dfrac{7}{2}x^2+x\\ =x^2\left(-\dfrac{1}{2}+\dfrac{7}{2}\right)+x\\ =3x^2+x\)
\(\dfrac{3}{5}\cdot x^2y^5\cdot x^3y^2\cdot\dfrac{-2}{3}\)
\(=\dfrac{3}{5}\cdot\dfrac{-2}{3}\cdot x^2\cdot x^3\cdot y^5\cdot y^2\)
\(=-\dfrac{2}{5}x^5y^7\)
\(\dfrac{3}{5}x^2y^5x^3y^2\cdot\dfrac{-2}{3}\\ =\left(\dfrac{3}{5}\cdot\dfrac{-2}{3}\right)\cdot\left(x^2\cdot x^3\right)\cdot\left(y^5\cdot y^2\right)\\ =-\dfrac{2}{5}x^5y^7\)
Gọi H là giao điểm của CN với BM
Xét ΔHCB có
CM,BN là các đường cao
CM cắt BN tại A
Do đó: A là trực tâm của ΔHCB
=>HA\(\perp\)CB tại K
Xét ΔBKA vuông tại K và ΔBNC vuông tại N có
\(\widehat{CBN}\) chung
Do đó: ΔBKA~ΔBNC
=>\(\dfrac{BK}{BN}=\dfrac{BA}{BC}\)
=>\(BN\cdot BA=BK\cdot BC\)
Xét ΔCKA vuông tại K và ΔCMB vuông tại M có
\(\widehat{KCA}\) chung
Do đó: ΔCKA~ΔCMB
=>\(\dfrac{CK}{CM}=\dfrac{CA}{CB}\)
=>\(CM\cdot CA=CK\cdot CB\)
\(BA\cdot BN+CA\cdot CM\)
\(=BC\cdot BK+BC\cdot CK=BC\left(BK+CK\right)=BC^2\)
(x-y)(x-2)=11
=>\(\left(x-y;x-2\right)\in\left\{\left(1;11\right);\left(11;1\right);\left(-1;-11\right);\left(-11;-1\right)\right\}\)
=>\(\left(x-2;x-y\right)\in\left\{\left(1;11\right);\left(11;1\right);\left(-1;-11\right);\left(-11;-1\right)\right\}\)
=>\(\left(x;x-y\right)\in\left\{\left(3;11\right);\left(13;1\right);\left(1;-11\right);\left(-9;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(3;-8\right);\left(13;12\right);\left(1;12\right);\left(-9;-8\right)\right\}\)