ᴄʜᴏ ᴛᴀ̣̂ᴘ ʜᴏ̛̣ᴘ ᴀ={ x € ɴ* | x < = 11} ʜᴀ̃ʏ ᴠɪᴇ̂́ᴛ ᴛᴀ̣̂ᴘ ᴀ ᴛʜᴇᴏ ᴘʜᴜ̛ᴏ̛ɴɢ ᴘʜᴀ́ᴘ ʟɪᴇ̣̂ᴛ ᴋᴇ̂ ᴄᴀ́ᴄ ᴘʜᴀ̂̀ɴ ᴛᴜ̛̉.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; A = 102 + m - 68 ⋮ 2
102 ⋮ 2; 68 ⋮ 2
A ⋮ 2 ⇔ m ⋮ 2
⇒ m = 2k (k \(\in\)N)
b; B = 15 + 24 - m + 305 ⋮ 5
15 ⋮ 5; 305 ⋮ 5 ⇒ B ⋮ 5 ⇔ 24 - m ⋮ 5
⇒ 25 - 1 - m ⋮ 5 ⇒ 1 + m ⋮ 5 ⇒ m = 5k - 1(k \(\in\)N)
a: A={a+b=5; a,b\(\in\)N}
=>A={(1;4);(0;5);(2;3);(3;2);(4;1);(5;0}}
a;A = 32 + 64 + 28 + \(x\) ⋮ 2 ⇔ \(x\) ⋮ 2
⇒ \(x\) = 2k (k \(\in\) N)
b; A = 32 + 64 + 28 + \(x\) không chia hết cho 2
⇔ \(x\) không chia hết cho 2
⇒\(x=\)2k + 1
a: \(x\in B\left(9\right)\)
=>\(x\in\left\{0;9;18;27;36;45;54;63;72;...\right\}\)
mà 25<=x<=64
nên \(x\in\left\{27;36;45;54;63\right\}\)
b: \(x\inƯ\left(18\right)\)
=>\(x\in\left\{1;2;3;6;9;18\right\}\)
mà x>3
nên \(x\in\left\{6;9;18\right\}\)
c: \(x⋮8\)
=>\(x\in\left\{0;8;16;24;32;40;...\right\}\)
mà x<35
nên \(x\in\left\{0;8;16;24;32\right\}\)
d: \(60⋮x\)
=>\(x\in\left\{1;2;3;4;5;6;10;12;15;20;30;60\right\}\)
mà x>5
nên \(x\in\left\{6;10;12;15;20;30;60\right\}\)
a; 35 + 49 + 210
Vì 35 \(⋮\) 7
49 \(⋮\) 7
210 ⋮ 7
Vậy A = 35 + 49 + 210 ⋮ 7 (tính chất chia hết của một tổng)
b; B= 560 - 18 + 3 = 560 - 14 - (4 - 3)
560 \(⋮\) 7
- 14 ⋮ 7
- (4 - 3) = -1 không chia hết 7
⇒ B = 560 - 18 + 3 không chia hết cho 7
a: Trên tia Oa, ta có: OM<ON
nên M nằm giữa O và N
=>OM+MN=ON
=>MN+3=5
=>MN=2(cm)
b: Trên tia Oa, ta có: ON<OP
nên N nằm giữa O và P
=>ON+NP=OP
=>NP+5=7
=>NP=2(cm)
Trên tia Oa, ta có: OM<OP
nên M nằm giữa O và P
=>OM+MP=OP
=>MP+3=7
=>MP=4(cm)
Vì MN+NP=MP
nên N nằm giữa M và P
Ta có: N nằm giữa M và P
mà NM=NP(=2cm)
nên N là trung điểm của MP
c: Vì O là trung điểm của MQ
nên \(MQ=2\cdot MO=2\cdot3=6\left(cm\right)\)
MQ=6cm
ON=5cm
Do đó: MQ>ON
a: M nằm giữa A và B
=>MA+MB=AB
=>MB=10-4=6(cm)
AM=4cm; AB=10cm
mà 4cm<10cm
nên AM<AB
b: I là trung điểm của AM
=>\(MI=\dfrac{MA}{2}=\dfrac{4}{2}=2\left(cm\right)\)
K là trung điểm của BM
=>\(MK=\dfrac{MB}{2}=\dfrac{6}{2}=3\left(cm\right)\)
IK=IM+MK=2+3=5(cm)
\(A=\left\{1;2;3;4;5;6;7;8;9;10;11\right\}\)
A={1;2;3;4;5;6;7;8;9;10;11}