Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
`a)7x+21=0`
`<=>7x=-21`
`<=>x=-21:7`
`<=>x=-3`
`b)3x+1=7x-11`
`<=>3x-7x=-11-1`
`<=>-4x=-12`
`<=>x=3`
`c)4/3x-5/6=1/2`
`<=>4/3x=1/2+5/6`
`<=>4/3x=4/3`
`<=>x=1`
`d)\frac{x-3}{5}=1-\frac{1-2x}{3}`
`<=>3(x-3)=15-5(1-2x)`
`<=>3(x-3)-15+5(1-2x)=0`
`<=>3x-9-15+5-10x=0`
`<=>-7x-19=0`
`<=>-7=19`
`<=>x=\frac{-19}{7}`
`e)\frac{2x}{3}+\frac{2x-1}{6}=4-x/3`
`<=>2.2x+2x-1=4.6-2x`
`<=>4x+2x-1=24-2x`
`<=>6x+2x=24+1`
`<=>8x=25`
`<=>x=\frac{25}{8}`
`f)(4x-10)(24+5x)=0`
`<=>2(2x-5)(24+5x)=0`
`<=>2x-5=0` hoặc `24+5x=0`
`<=>x=5/2` hoặc `x=\frac{-24}{5}`
`g)x^2+1=x(x-1)`
`<=>x^2+1=x^2-x`
`<=>x^2-x^2=-x-1`
`<=>-x-1=0`
`<=>-x=1`
`<=>x=-1`
`h)
`i)\frac{2x^2-3x-2}{x^2-4}=2(ĐKXĐ:x\ne+-2)`
`<=>\frac{2x^2-4x+x-2}{(x-2)(x+2)}=2`
`<=>\frac{2x+1}{x+2}=2`
`<=>2x+1=2x+4`
`<=>1=4` (Vô lý)
Vậy phương trình vô nghiệm.
`i)\frac{x-1}{x+1}+3=\frac{2x+3}{x+1}(ĐK:x\ne-1)`
`<=>3=\frac{2x+3}{x+1}-\frac{x-1}{x+1}`
`<=>\frac{2x+3-x+1}{x+1}=3`
`<=>\frac{x+4}{x+1}=3`
`<=>3(x+1)=x+4`
`<=>3x+3=x+4`
`<=>2x=1`
`<=>x=1/2`
`Answer:`
Vế trái: `(x^2-6x+11)(y^2+2y+4)`
`=((x-3)^2+2)((y+1)^2+3)`
`>=2.3`
`>=6(1)`
Vế phải: `-z^2+4z+2`
`=-(z^2-4z-2)`
`=-(z^2-4z+4-6)`
`=-(z-2)^2+6=<6(2)`
Từ `(1)(2)` suy ra dấu "=" xảy ra khi: \(\hept{\begin{cases}x-3=0\\y+1=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\\z=2\end{cases}}}\)
Ta có
a2+b2+c2 = ab+bc+ca
<=> 2(a2+b2+c2)= 2(ab+bc+ca)
<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
Thế vào pt thứ (2) ta được
a8 + b8 + c8 = 3
<=> 3a8 = 3
<=> a8 = 1
<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)
Từ (3) => P = 1 + 1 - 1 = 1
Từ (4) => P = - 1 + 1 + 1 = 1
ta có :\(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2.\left(a^2+b^2+c^2\right)=2.\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
mà ta có: \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\) \(\forall a,b,c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) \(\forall a,b,c\)
dấu \("="\) xảy ra \(\Leftrightarrow a=b=c\)
lại có:\(a^8+b^8+c^8=3\) mà \(a=b=c\)
\(\Rightarrow a^8+a^8+a^8=3\)
\(\Leftrightarrow a^8=1\)
\(\Leftrightarrow a=1\)
vậy \(a=b=c=1\)
A=\(x.\left(x+2\right).\left(x^2+2x+2\right)+1\)
\(=x.\left(x+2\right).\left[x.\left(x+2\right)+2\right]+1\)
đặt \(x.\left(x+2\right)=a\) ta có:
\(A=a.\left(a+2\right)+1\)
\(A=a^2+2a+1\)
\(=\left(a+1\right)^2\)
\(=\left[x.\left(x+2\right)+1\right]^2\)
\(=\left(x^2+2x+1\right)^2\)
\(=\left(x+1\right)^4\)
phân tích đa thức : \(a^2.\left(b-c\right)+b^2.\left(c-a\right)+c^2.\left(a-b\right)\) thành nhân tử
`Answer:`
`a^2.(b-c)+b^2.(c-a)+c^2.(a-b)`
`=a^2.(b-c)+b^2[(c-b)-(a-b)]+c^2.(a-b)`
`=a^2.(b-c)+b^2.(c-b)+b^2.(a-b)+c^2.(a-b)`
`=(b-c)(a^2-b^2)-(a-b)(b^2-c^2)`
`=(b-c)(a-b)(a+b)-(a-b)(b-c)(b+c)`
`=(a-b)(b-c)(a+b-b-c)`
`=(a-b)(b-c)(a-c)`
\(a^2.\left(b-c\right)+b^2,\left(c-a\right)+c^2.\left(a-b\right)\)
\(=a^2.\left(b-c\right)-b^2.\left(a-c\right)+c^2.\left(a-b\right)\)
\(=a^2.\left(b-c\right)-b^2.\left[\left(a-b\right)+\left(b-c\right)\right]+c^2.\left(a-b\right)\)
\(=a^2.\left(b-c\right)-b^2.\left(a-b\right)-b^2.\left(b-c\right)+c^2.\left(a-b\right)\)
\(=\left(b-c\right).\left(a^2-b^2\right)+\left(a-b\right).\left(c^2-b^2\right)\)
\(=\left(b-c\right).\left(a-b\right).\left(a+b\right)-\left(b-c\right).\left(b+c\right).\left(a-b\right)\)
\(=\left(b-c\right).\left(a-b\right).\left(a+b-b-c\right)\)
\(=\left(b-c\right).\left(a-b\right).\left(a-c\right)\)
`Answer:`
`(x+5)(2x-1)=0`
`<=>x+5=0` hoặc `2x-1=0`
`<=>x=-5` hoặc `2x=1`
`<=>x=-5` hoặc `x=1/2`