K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2022

Nào , cop đi , cop đi 

HT

:)))))))))))

@@@@@@@@@@@

20 tháng 1 2022

 ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ) Giả sử √2 là số hữu tỉ nên suy ra : √2=ab ( a ; b 

 N* ) ; ( a ; b ) = 1

 b√2=a

 b2.2=a2

 a2 chia hết cho 2 ; mà 2

 là số nguyên tố 

 a chia hết cho 2

 a2 chia hết cho 4

  b2.2 chia hết cho 4

 b2 chia hết cho 2 ; mà 2 là số nguyên tố nên suy ra b chia hết cho 2

 (a;b)=2 mâu thuẫn với (a;b)=1

 Điều giả sử sai

 √2 là số vô tỉ

20 tháng 1 2022

?bbbbb

20 tháng 1 2022

\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x-4}{x-2}\)

23 tháng 1 2022

\(2\left(5x+1\right)-5=\left(x+6\right)\left(2x+k\right)\left(1\right)\)

Thay \(x=3\) vào \(\left(1\right)\)ta có:

\(2.\left(5.3+1\right)-5=\left(3+6\right)\left(2.3+k\right)\)

Thu gọn, tìm được \(k=-3\)

20 tháng 1 2022
0,2 nha e HT
20 tháng 1 2022

= 0.2 chứ làm sao

:)))

:))))))

~~~

2 tháng 3 2022

`Answer:`

undefined

undefined

undefined

undefined

19 tháng 1 2022

\(\frac{x-2}{x-3}=\frac{x-3+1}{x-3}=1+\frac{1}{x-3}\)

\(\Rightarrow x-3\inƯ\left(1\right)=\left\{\pm1\right\}\)

x - 31-1
x42
20 tháng 1 2022

cảm ơn bạn

20 tháng 1 2022

\(-2x^2-10x-6=0\)\(\Leftrightarrow4x^2+20x+12=0\)\(\Leftrightarrow\left(4x^2+20x+25\right)-13=0\)\(\Leftrightarrow\left(2x+5\right)^2-\left(\sqrt{13}\right)^2=0\)\(\Leftrightarrow\left(2x+5+\sqrt{13}\right)\left(2x+5-\sqrt{13}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}2x+5+\sqrt{13}=0\\2x+5-\sqrt{13}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5-\sqrt{13}}{2}\\x=\frac{-5+\sqrt{13}}{2}\end{cases}}\)