Cho tam giác ABC vuông tại A có góc C=15 độ, trung tuyến AM. Đường trung trực của BC cắt các đường thẳng AB và AC tại N và P.
a,Tính tỉ số k= AP/PC.
b, Gọi I là giao điểm của BP và NC. So sánh MA và MI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABMD có
AD//BM
AB//MD
Do đó: ABMD là hình bình hành
=>AD=BM; AB=MD
Xét tứ giác AEMC có
AE//MC
AC//ME
Do đó: AEMC là hình bình hành
=>AE=MC; ME=AC
Ta có: AE+AD=DE
BM+MC=BC
mà AD=BM và MC=AE
nên DE=BC
Xét ΔABC và ΔMDE có
AB=MD
BC\DE
AC=ME
Do đó: ΔABC=ΔMDE
b: Ta có: AEMC là hình bình hành
=>AM cắt EC tại trung điểm của mỗi đường(1)
Ta có: ABMD là hình bình hành
=>AM cắt BD tại trung điểm của mỗi đường(2)
Từ (1),(2) suy ra AM,EC,BD đồng quy
\(x^3+6x^2+11x+6\)
\(=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
∆ABC có:
AB = BC (gt)
⇒ ∆ABC cân tại B
⇒ ∠BAC = ∠BCA (1)
Do AC là tia phân giác của ∠BAD (gt)
⇒ ∠DAC = ∠BAC (2)
Từ (1) và (2) ⇒ ∠BCA = ∠DAC
Mà ∠BCA và ∠DAC là hai góc so le trong
⇒ BC // AD
⇒ ABCD là hình thang
a) Do x là số nguyên nên 2x + 1 là số nguyên lẻ
Để phân thức đã cho nhận giá trị nguyên thì 2 ⋮ (2x + 1)
⇒ 2x + 1 ∈ Ư(2) = {-1; 1}
⇒ 2x ∈ {-2; 0}
⇒ x ∈ {-1; 0}
Vậy có 2 giá trị nguyên của x thỏa mãn yêu cầu đề bài
b) Ta có:
Để phân thức đã cho nhận giá trị nguyên thì 11 ⋮ (n + 2)
⇒ n + 2 ∈ Ư(11) = {-11; -1; 1; 11}
⇒ n ∈ {-13; -3; -1; 9}
Vậy có 4 giá trị nguyên của n thỏa mãn yêu cầu đề bài
|3x - 2| = 4x + 1
|3x - 2| = 3x - 2 khi x ≥ 2/3
|3x - 2| = 2 - 3x khi x < 2/3
*) Với x ≥ 2/3, ta có:
|3x - 2| = 4x + 1
3x - 2 = 4x + 1
3x - 4x = 1 + 2
-x = 3
x = -3 (loại)
*) Với x < 2/3, ta có:
|3x - 2| = 4x + 1
2 - 3x = 4x + 1
-3x - 4x = 1 - 2
-7x = -1
x = 1/7 (nhận)
Vậy phương trình đã cho có 1 nghiệm
Ta có hệ phương trình: a^3 - 3ab^2 = 2,b^3 - 3a^2b = -11
Cộng hai phương trình với nhau ta được:
a^3 - 3ab^2 + b^3 - 3a^2b
= 2 - 11,(a^3 + b^3) - 3ab(a + b)
= -9,(a + b)(a^2 - ab + b^2) - 3ab(a + b)
= -9,(a + b)(a^2 - ab + b^2 - 3ab)
= -9,(a + b)(a^2 - 4ab + b^2) = -9
Ta cần tìm giá trị của a^2 + b^2. Ta có:,(a + b)^2 = a^2 + b^2 + 2ab
Vậy:,a^2 + b^2 = (a + b)^2 - 2ab
Ta có:,a^3 - 3ab^2 = 2,b^3 - 3a^2b = -11
Cộng hai phương trình ta được:
a^3 + b^3 - 3ab(a + b)
= -9,(a + b)(a^2 - ab + b^2) - 3ab(a + b)
= -9,(a + b)(a^2 - ab + b^2 - 3ab)
= -9,(a + b)(a^2 - 4ab + b^2) = -9
Thay a^2 - 4ab + b^2 = -9 vào phương trình (a + b)(a^2 - 4ab + b^2) = -9 ta được:
(a + b)(-9) = -9,a + b = 1
Thay a + b = 1 vào công thức a^2 + b^2 = (a + b)^2 - 2ab
Ta được:,a^2 + b^2 = 1^2 - 2ab,a^2 + b^2 = 1 - 2ab
Vậy để tính a^2 + b^2, chúng ta cần tìm giá trị của ab.
Thay a + b = 1 vào a^3 - 3ab^2 = 2 ta được:
a^3 - 3ab^2 =
2,a^3 - 3a(1 - a)^2
= 2,a^3 - 3a(1 - 2a + a^2)
= 2,a^3 - 3a + 6a^2 - 3a^3
= 2,-2a^3 + 6a^2 - 3a - 2
= 0,2a^3 - 6a^2 + 3a + 2
= 0,2(a^3 - 3a^2 + 3a - 1)
= 0,2(a - 1)^3 = 0
Vậy a = 1 hoặc a = b
Nếu a = 1, ta có:
1 - 3b^2 = 2,-3b^2 = 1,b^2 = -1, không có giá trị thực cho b.
Nếu a = b, ta có:,a^3 - 3a^3 = 2,-2a^3 = 2,a^3 = -1,a = -1
Vậy a = -1, b = -1
Thay a = -1, b = -1 vào a^2 + b^2 = 1 - 2ab ta được:
a^2 + b^2 = 1 - 2(-1)(-1) = 1 - 2 = -1
Vậy kết quả là a^2 + b^2 = -1.
\(A=2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)
\(=2\left[\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\right]-3\left[\left(x^2+y^2\right)^2-2x^2y^2\right]\)
\(=2\left[1-3x^2y^2\right]-3\left(1-2x^2y^2\right)\)
\(=2-6x^2y^2-3+6x^2y^2=-1\)
a: Số tiền trả 1 giờ làm theo quy định là:
2000000:40=50000(đồng)
b: Số tiền trả cho 1 giờ làm thêm là:
50000x(1+50%)=75000(đồng)
Tổng số tiền Bình được trả là:
2000000+75000*5=2375000(đồng)