Đa thức f(x) chia cho (x-2) dư 6, chia cho (x²+3)dư 3x+2
Tìm đa thức dư f(x) chia cho (x-2) . (x²+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức f(x) chia cho (x-2) dư 6, chia cho (x²+3)dư 3x+2
Tìm đa thức dư f(x) chia cho (x-2) . (x²+3)
\(A=\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(=\dfrac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)
\(=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(=-\dfrac{2}{6}=-\dfrac{1}{3}\)
\(2^{-1}+\left(5^2\right)^3\cdot5^{-6}+4^{-3}\cdot32-2\left(-3\right)^2\cdot\dfrac{1}{9}\)
\(=\dfrac{1}{2}+5^6.5^{-6}+4^{-3}.4^2.2--6^2.\dfrac{1}{9}\)
\(=\dfrac{1}{2}+1+\dfrac{1}{4}.2+\dfrac{3^2.2^2}{3^2}\)
\(=\dfrac{1}{2}+1+\dfrac{1}{2}+2^2\)
\(=\dfrac{1}{2}.2+1+4\)
\(=1+5=6\)
a, Xét tam giác MKN và tam giác MKO có
MK chung
MN = MO ( cmt)
\(\widehat{NMK}=\widehat{OMK}\) ( do MK là tia phân giác )
=> tam giác MKN = tam giác MKO (c-g-c)
b, Do tam giác MKN = tam giác MKO (cmt)
=> KN = KO
c, Do MK là trung điểm NO
mà MK cách đều hai điểm N và O
=> MK là đường trung trực
=> MK vuông góc với NO
ta có : `x/2=y/5=> (x^2)/4 =(y^2)/25` và `x^2+y^2=76`
ADTC dãy tỉ số bằng nhau ta có :
`(x^2)/4 =(y^2)/25 =(x^2+y^2)/(4+25)=76/29`
`=> x/2=76/29=>x= 76/29.2=152/29`
`=>y/5= 76/29=>y=76/29 . 5=380/29`
ta có: x/2 = y/5
=> x = 2/5. y
=> (2/5. y)2 + y2 = 76
=> 4/25. y2 + y2 = 76
=> 29/25. y2 = 76
=> y2 = 76 : 29/25 = 1900/29
=> y = \(\sqrt{\dfrac{1900}{29}}\)
a) Xét ΔBMC và ΔCNB có :
BM=CN ( AB=AC; AM=AN )
góc B = góc C ( ΔABC cân tại A )
BC : chung
suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )
suy ra : đpcm
b) chứng minh EBC cân nha em
Từ : ΔBMC = ΔCNB
suy ra : góc MCB = góc NBC ( 2 góc tương ứng )
suy ra : đpcm
c) ta có : ΔABC cân tại A
suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)
ta lại có : ΔAMN cân tại A
suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)
Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )
a) Xét ΔBAD và ΔBED vuông lần lượt tại A và E có :
BD : cạnh chung
góc ABD = góc EBD ( DB là tia phân giác của góc B )
Do đó : ΔBAD=ΔBED ( c.h-g.n )
suy ra : BA = BE ( 2 cạnh tương ứng )
b) Ta có : BA = BE ( cmt )
DA = DE ( ΔBAD=ΔBED )
suy ra : BD là đường trung trực của AE
suy ra : BD vuông góc với AE (1)
Xét ΔBFD và ΔBCD vuông tại F và E có :
góc B : chung
BE=BA (cmt)
do đó : ΔBFD=ΔBCD ( c.g.v-g.n.k )
suy ra : BC = BF
Xét ΔBDF và ΔBDC có :
BC=BF ( cmt )
góc FBD = góc CBD ( BD là tia phân giác của góc B )
BD : chung
do đó : hai tam giác trên bằng nhau theo trường hơp ( c-g-c )
suy ra : DF=DC ( 2 cạnh tương ứng )
ta có : DF=DC ; BC=BF
suy ra : BD là đường trung trực của CF
suy ra : BD vuông CF (2)
Từ (1) và (2) suy ra : đpcm
a) Xét tam giác ABD và EBD có
góc BAD=BED=900(gt)
góc ABD=EBD(BD là phân giác)
BD chung
=>tam giác ABD = tam giác EBD( cạnh huyền - góc nhọn )
=>BA=BE( 2 cạnh tương ứng )
b)Có BA=BE => tam giác BAE cân tại B
mà BD là tia phần giác góc B => BD là đường cao => BD vuông góc AE
Có tam giác ABD = tam giác EBD => AD=ED (2 cạnh tương ứng)
Xét tam giác ADF và EDC có
góc DAF=DEC=90o(gt)
góc FAD=EDC (2 góc đối đỉnh)
AD=ED (cmt)
=>tam giác ADF = tam giác EDC(cgv-gnk)
=>AF=EC ( 2 cạnh tương ứng)
có BF=AF+AB; BC=CE+EB
mà AF=EC, AB=EB => BF=BC => tam giác FBC cân tại B
mà BD là tia phân giác => BD là đường cao => BD vuông góc CF
mà BD vuông góc với AE
=> AE song song CF