K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 5

Số học sinh nữ kém hơn số học sinh nam là 8%, xong số học sinh nam là số tròn chục có 2 chữ số bé nhất? Đề có vấn đề bạn coi lại nhé. 

29 tháng 5

ừ bởi mình cũng ko biêt vì bài này là cô mik mà

 

0,0005=0,05% Bạn nhé

HỌC TỐT

19 tháng 5

\(\text{0,0005×100=0,05% }\)

19 tháng 5

pt thứ hai \(\Leftrightarrow\) \(y^2-\left(3x+2\right)y+2x^2+3x+1=0\) (*)

Ta có \(\Delta=\left[-\left(3x+2\right)\right]^2-4\left(2x^2+3x+1\right)\)

\(=9x^2+12x+4-8x^2-12x-4\)

\(=x^2\ge0\) 

Do đó (*) có 2 nghiệm là \(\left[{}\begin{matrix}y=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3x+2+\sqrt{x^2}}{2}=\dfrac{3x+2+\left|x\right|}{2}\\y=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3x+2-\sqrt{x^2}}{2}=\dfrac{3x+2-\left|x\right|}{2}\end{matrix}\right.\)

Không mất tính tổng quát, giả sử \(x\ge0\). Khi đó:

\(\left[{}\begin{matrix}y=\dfrac{3x+2+x}{2}=\dfrac{4x+2}{2}=2x+1\\y=\dfrac{3x+2-x}{2}=\dfrac{2x+2}{2}=x+1\end{matrix}\right.\)

Nếu \(y=2x+1\) thì thay vào pt đầu tiên, ta có:

\(x^2+\left(2x+1\right)^2+x+2x+1=8\)

\(\Leftrightarrow5x^2+7x-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\) \(\Rightarrow y=2x+1=2.\dfrac{3}{5}+1=\dfrac{11}{5}\)

Nếu \(y=x+1\) thì thế vào pt đầu tiên, ta có:

\(x^2+\left(x+1\right)^2+x+x+1=8\)

\(\Leftrightarrow2x^2+4x-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\) \(\Rightarrow y=x+1=1+1=2\)

 Vậy ta tìm được 2 cặp nghiệm là \(\left(\dfrac{3}{5},\dfrac{11}{5}\right)\) và \(\left(1,2\right)\)

 Tương tự như vậy, xét TH \(x< 0\) thì ta tìm được thêm 2 cặp nghiệm chính là \(\left(-2,-3\right)\) và \(\left(-3,-2\right)\)

19 tháng 5

phương trình thứ 2 dấu = ở đâu vậy ạ

 

19 tháng 5

Xét tam giác ABC vuông tại A có AH là đường cao

\(BH.BC=AB^2\)

\(\Rightarrow\left(BC-HC\right)\cdot BC=AB^2\)

\(\Rightarrow\left(BC-19,2\right)\cdot BC=AB^2\)

\(\Rightarrow BC^2-19,2BC=12^2\)

\(\Rightarrow BC^2-19,2BC-144=0\)

\(\Rightarrow BC=\dfrac{48+12\sqrt{41}}{5}\approx24,96\left(cm\right)\)Xét tam giác ABC vuông tại A có

\(BC^2=AB^2+AC^2\)

\(\Rightarrow24,96^2=12^2+AC^2\)

\(\Rightarrow AC\approx21,89\left(cm\right)\)

Xét tam giác ABC vuông tại A có

\(S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}BC.AH\)

\(\Rightarrow\dfrac{1}{2}\cdot12\cdot21,89=\dfrac{1}{2}\cdot24,96\cdot AH\)

\(\Rightarrow AH=\dfrac{262,68}{24,96}\approx10,52\left(cm\right)\)

Vậy độ dài của 𝐴𝐶𝐴𝐻 là: 𝐴𝐶≈21,89 cm 𝐴𝐻≈10,52 cm

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(BH\left(BH+19,2\right)=12^2=144\)

=>\(BH^2+19,2\cdot BH-144=0\)

=>\(\left[{}\begin{matrix}BH=\dfrac{-19,2-\dfrac{24\sqrt{41}}{5}}{2}\left(loại\right)\\BH=\dfrac{-19,2+\dfrac{24\sqrt{41}}{5}}{2}=-9,6+\dfrac{12\sqrt{41}}{5}\left(nhận\right)\end{matrix}\right.\)

=>\(BH=\dfrac{-48+12\sqrt{41}}{5}\)

=>\(BC=\dfrac{-48+12\sqrt{41}}{5}+19,2=\dfrac{48+12\sqrt{41}}{5}\left(cm\right)\)

ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC=\dfrac{-48+12\sqrt{41}}{5}\cdot19,2=3,84\left(-48+12\sqrt{41}\right)\)

=>\(AH=\sqrt{3,84\left(-48+12\sqrt{41}\right)}\left(cm\right)\)

=>\(AC=\sqrt{AH^2+HC^2}=\sqrt{3,84\left(-48+12\sqrt{41}\right)+19,2^2}\)

=>\(AC=\sqrt{184,32+46,08\sqrt{41}}\)(cm)

19 tháng 5

Tổng bốn số là:

\(84\times4=336\)

Vì tổng hai số đầu bằng 1/2 tổng 4 số nên tổng số thứ ba và số thứ tư cũng bằng 1/2 tổng 4 số và bằng: \(336:2=168\)

Số thứ ba là:

\(\left(168-16\right):2=76\)

Số thứ tư là:

\(76+16=92\)

19 tháng 5

a. Diện tích quét sơn là:

\(\left(1,5+0,6\right)\times2\times1,8+1,5\times0,6=8,46\left(m^2\right)\)

b. Nếu đổ đầy thùng nước thì thể tích nước trong thùng là:

\(1,5\times0,6\times1,8=1,62\left(m^3\right)\)

19 tháng 5

\(\sqrt{x}+\sqrt{2-x}+\sqrt{2x-x^2}=3\) (ĐKXĐ: \(0\le x\le2\))

\(\Leftrightarrow\sqrt{x}+\sqrt{2-x}+\sqrt{x\left(2-x\right)}=3\) (1)

Đặt \(\sqrt{x}+\sqrt{2-x}=a\Rightarrow\dfrac{a^2-2}{2}=\sqrt{x\left(2-x\right)}\) (2) (a > 0)

Thay (2) vào (1), ta được:

\(a+\dfrac{a^2-2}{2}=3\)

\(\Leftrightarrow a^2+2a-2=6\)

\(\Leftrightarrow a^2+2a-8=0\) \(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-4\end{matrix}\right.\)

Mà a > 0 nên \(a=2\)

\(\Rightarrow\sqrt{x}+\sqrt{2-x}=2\)

\(\Leftrightarrow x+2-x+2\sqrt{x\left(2-x\right)}=2\)

\(\Leftrightarrow2\sqrt{x\left(2-x\right)}=0\)

\(\Leftrightarrow x\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tmdk\right)\\x=2\left(tmdk\right)\end{matrix}\right.\)

Vậy ...

a: Để (d) có hệ số góc bằng -2 thì m-1=-2

=>m=-1

b: Thay x=-3 và y=0 vào (d), ta được:

\(-3\left(m-1\right)+2m=0\)

=>-3m+3+2m=0

=>3-m=0

=>m=3

c: Thay x=0 và y=2 vào (d), ta được:

0(m-1)+2m=2

=>2m=2

=>m=1

d: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m-1=-3\\2m\ne4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-2\\m\ne2\end{matrix}\right.\)

=>m=-2

19 tháng 5

a) Tìm 𝑚 để 𝑑 có hệ số góc bằng -2.

Hệ số góc của đường thẳng 𝑑𝑚−1. Để 𝑑 có hệ số góc bằng -2, ta giải phương trình: 𝑚−1=−2

𝑚=−2+1

𝑚=−1

b) Tìm 𝑚 để 𝑑 cắt trục hoành tại điểm có hoành độ bằng -3.

Khi 𝑑 cắt trục hoành, 𝑦=0, từ đó: (𝑚−1)𝑥+2𝑚=0

(𝑚−1)(−3)+2𝑚=0

3(𝑚−1)+2𝑚=0

3𝑚−3+2𝑚=0

5𝑚−3=0

5𝑚=3

𝑚=35

c) Tìm 𝑚 để 𝑑 cắt trục tung tại điểm có tung độ bằng 2.

Khi 𝑑 cắt trục tung, 𝑥=0, khi đó: (𝑚−1)⋅0+2𝑚=2

\(\Rightarrow\)2𝑚=2\(\Rightarrow\) 𝑚=1

d) Tìm 𝑚 để 𝑑 song song với đường thẳng 𝑑1: 𝑦=−3𝑥+4.

Đường thẳng 𝑑 sẽ song song với 𝑑1 nếu hệ số góc của 𝑑 bằng hệ số góc của 𝑑1𝑚−1=−3

𝑚=−3+1

𝑚=−2

Kết luận:

a) 𝑚=−1
b) 𝑚=353/5

c) 𝑚=1
d) 𝑚=−2

19 tháng 5

Trung bình cộng 4 số là 84

=> Tổng 4 số là: 84x4=336.

Tổng 2 số đầu =1/2 tổng bốn số

=> Tổng 2 số đầu = Tổng 2 số sau = 336/2=168

Bài toán trở thành tìm 2 số khi biết tổng và hiệu:

Tổng số thứ 3 và thứ 4 = 168

Số thứ 3 kém số thứ tư 16 đơn vị

=> Số thứ 3 = (168-16):2=76

=> Số thứ 4 = 168-76 = 92

Vậy số thứ 3 là 76 và số thứ tư là 92

Sao Hải Vương (Neptune)Sao Hải Vương (khoảng cách đến Mặt Trời 30 AU), mặc dù kích cỡ hơi nhỏ hơn Sao Thiên Vương nhưng khối lượng của nó lại lớn hơn (bằng 17 lần khối lượng của Trái Đất) và do vậy khối lượng riêng lớn hơn. Nó cũng bức xạ nhiều nhiệt lượng hơn nhưng không lớn bằng của Sao Mộc hay Sao Thổ.