K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7

\(A=2^2+2^4+2^6+...+2^{200}\\ 2^2A=2^4+2^6+...+2^{202}\\ 4A-A=\left(2^4+2^6+2^8+...+2^{202}\right)-\left(2^2+2^4+2^6+...+2^{200}\right)\\ 3A=2^{202}-2^2\) 

\(=>3A+4=2^{202}-2^2+4=2^{202}-4+4=2^{202}\) 

\(=>2^{202}=4^n\\ =>2^{202}=\left(2^2\right)^n\\ =>2^{202}=2^{2n}\\ =>2n=202\\ =>n=101\)

ABCD là hình vuông

=>AB//CD

mà C\(\in\)DE

nên AB//DE

Ta có: DEFG là hình chữ nhật

=>DE//FG

mà AB//DE

nên AB//FG

a: \(\left(x-2\right)\left(3x-1\right)\left(x^2-4x+1\right)\)

\(=\left(3x^2-x-6x+2\right)\left(x^2-4x+1\right)\)

\(=\left(3x^2-7x+2\right)\left(x^2-4x+1\right)\)

\(=3x^4-12x^3+3x^2-7x^3+28x^2-7x+2x^2-8x+2\)

\(=3x^4-19x^3+33x^2-15x+2\)

b: \(x\left(3-4x\right)\left(2x^2-3x\right)\)

\(=\left(-4x^2+3x\right)\left(2x^2-3x\right)\)

\(=-8x^4+12x^3+6x^3-9x^2\)

\(=-8x^4+18x^3-9x^2\)

2 tháng 7

a) 

\(\left(x-2\right)\left(3x-1\right)\left(x^2-4x+1\right)\\ =\left(3x^2-6x-x+2\right)\left(x^2-4x+1\right)\\ =\left(3x^2-7x+2\right)\left(x^2-4x+1\right)\\ =3x^4-12x^3+3x^2-7x^3+28x^2-7x-8x+2\\ =3x^4-19x^3+31x^2-15x+2\) 

b) 

\(x\left(3-4x\right)\left(2x^2-3x\right)\\ =\left(3x-4x^2\right)\left(2x^2-3x\right)\\ =6x^3-9x^2-8x^4+12x^3\\ =-8x^4+18x^3-9x^2\)

2 tháng 7

a) 

\(32< 2^x< 128\\ =>2^5< 2^x< 2^7\\ =>5< x< 7\\ =>x=6\)

b) 

\(2\cdot16\ge2^x>4\\ =>2\cdot2^4\ge2^x>2^2\\ =>2^5\ge2^x>2^2\\ =>5\ge x>2\\ =>x\in\left\{3;4;5\right\}\)

c) 

\(9\cdot27\le3^x\le243\\ =>3^2\cdot3^3\le3^x\le3^5\\ =>3^5\le3^x\le3^5\\ =>5\le x\le5\\ =>x=5\)

d) 

\(x^{2019}=x\\ =>x^{2019}-x=0\\ =>x\left(x^{2018}-1\right)=0\)

TH1: x = 0

TH2: `x^2018-1=0`

`=>x^2018=1`

`=>x^2018=1^2018`

`=>x=1` hoặc `x=-1`

a: \(32< 2^x< 128\)

=>\(2^5< 2^x< 2^7\)

=>5<x<7

mà x là số tự nhiên

nên x=6

b: \(2\cdot16>=2^x>4\)

=>\(2^5>=2^x>2^2\)

=>2<x<=5

mà x là số tự nhiên

nên \(x\in\left\{3;4;5\right\}\)

c: \(9\cdot27< =3^x< =243\)

=>\(243< =3^x< =243\)

=>\(3^x=243=3^5\)

=>x=5

d: \(x^{2019}=x\)

=>\(x\left(x^{2018}-1\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x^{2018}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^{2018}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

e: \(2^{x+1}+4\cdot2^x=3\cdot2^7\)

=>\(2^x\cdot2+4\cdot2^x=6\cdot2^6\)

=>\(6\cdot2^x=6\cdot2^6\)

=>x=6

f: \(2^{2x}+2^{2x+3}=3^2\cdot8^4\)

=>\(2^{2x}+2^{2x}\cdot8=9\cdot8^4\)

=>\(9\cdot2^{2x}=9\cdot2^{12}\)

=>2x=12

=>x=6

g: \(27^{x+1}=9^{x+5}\)

=>\(3^{3\left(x+1\right)}=3^{2\left(x+5\right)}\)

=>3(x+1)=2(x+5)

=>3x+3=2x+10

=>3x-2x=10-3

=>x=7

h: \(3^{x+2}+5\cdot3^{x+1}=648\)

=>\(3^x\cdot9+5\cdot3^x\cdot3=648\)

=>\(3^x\cdot24=648\)

=>\(3^x=\dfrac{648}{24}=27=3^3\)

=>x=3

2 tháng 7

a) Thay x=2 vào ta có:

\(2^2-4m\cdot2+1=0\\ \Leftrightarrow4-8m+1=0\\ \Leftrightarrow5-8m=0\\ \Leftrightarrow8m=5\\ \Leftrightarrow m=\dfrac{5}{8}\)

b) Thay x=2 vào ta có:

\(3\cdot2^2-5m\cdot2+7\\ \Leftrightarrow12-10m+7=0\\ \Leftrightarrow19-10m=0\\ \Leftrightarrow10m=19\\\Leftrightarrow m=\dfrac{19}{10}\)

a:

Đặt \(x^2-4mx+1=0\left(1\right)\)

Thay x=2 vào (1), ta được:

\(2^2-4m\cdot2+1=0\)

=>\(4-8m+1=0\)

=>5-8m=0

=>8m=5

=>\(m=\dfrac{5}{8}\)

b: Đặt \(3x^2-5mx+7=0\left(2\right)\)

Thay x=2 vào (2), ta được:

\(3\cdot2^2-5m\cdot2+7=0\)

=>12-10m+7=0

=>19-10m=0

=>10m=19

=>\(m=\dfrac{19}{10}\)

Tỉ số giữa Số học sinh khá và cả lớp là:

\(\dfrac{1}{2}\left(1-\dfrac{1}{4}\right)=\dfrac{1}{2}\cdot\dfrac{3}{4}=\dfrac{3}{8}\)

Số học sinh trung bình chiếm: \(1-\dfrac{3}{8}-\dfrac{1}{4}=\dfrac{5}{8}-\dfrac{2}{8}=\dfrac{3}{8}\)(số học sinh cả lớp)

Số học sinh cả lớp là \(24:\dfrac{3}{8}=24\cdot\dfrac{8}{3}=64\left(bạn\right)\)

2 tháng 7

\(\left(1:\dfrac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\cdot\dfrac{1}{49}\\ =7^2\left(2^6:2^5\right)\cdot\dfrac{1}{7^2}\\=\left(7^2\cdot\dfrac{1}{7^2}\right)\cdot2^{6-5}\\ =1\cdot2^1\\ =2\)

\(\left(1:\dfrac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\cdot\dfrac{1}{49}\)

\(=\dfrac{7^2}{49}\cdot\left(2^6:2^5\right)\)

\(=\dfrac{49}{49}\cdot2=2\)

2 tháng 7

a)5x+17-(2x+5)=0

=>5x+17-2x-5=0

=>3x+12=0

=>3x=-12

=>x=-12:3=-4

b)3(1-x)-(5-2x)=0

=>3-3x-5+2x=0

=>-2-x=0

=>x=-2

c)2(x-1)-3(x-2)=0

=>2x-2-3x+6=0

=>-x+4=0

=>x=4

d)(x-3)(2x-5)+(2x-4)(5-2x)=0

=>(x-3)(2x-5)-(2x-4)(2x-5)=0

=>(2x-5)(x-3-2x+4)=0

=>(2x-5)(1-x)=0

TH1: 2x - 5=0=>2x=5=>x=5/2

TH2: 1-x=0=>x=1

a: Đặt 5x+17-(2x+5)=0

=>\(5x+17-2x-5=0\)

=>\(3x+12=0\)

=>\(3x=-12\)

=>\(x=-\dfrac{12}{3}=-4\)

b: Đặt \(3\left(1-x\right)-\left(5-2x\right)=0\)

=>\(3-3x-5+2x=0\)

=>\(-x-2=0\)

=>x+2=0

=>x=-2

c: Đặt \(2\left(x-1\right)-3\left(x-2\right)=0\)

=>\(2x-2-3x+6=0\)

=>4-x=0

=>x=4

d: Sửa đề: (x-3)(2x-5)+(2x-4)*(5-x) 

Đặt \(\left(x-3\right)\left(2x-5\right)+\left(2x-4\right)\left(5-x\right)=0\)

=>\(2x^2-5x-6x+15+10x-2x^2-20+4x=0\)

=>3x-5=0

=>3x=5

=>\(x=\dfrac{5}{3}\)

Đặt 5x+17-(2x+5)=0

=>5x+17-2x-5=0

=>3x+12=0

=>3x=-12

=>\(x=-\dfrac{12}{3}=-4\)

Diện tích xung quanh của căn phòng là:

\(\left(8+6\right)\times2\times4=8\times14=112\left(m^2\right)\)

Diện tích trần nhà là \(8\times6=48\left(m^2\right)\)

Diện tích cửa ra vào là 1x2,2=2,2(m2)

Diện tích 4 cửa số hình vuông là:

4x0,8x0,8=0,64x4=2,56(m2)

Diện tích cần quét vôi là:

112+48-2,2-2,56=155,24(m2)

2 tháng 7

Diện tích của tất cả cửa là:

\(1\times2,2+4\times0,8\times0,8=4,76\left(m^2\right)\)

Diện tích xung quanh và trần nhà là::

\(2\times4\times\left(8+6\right)+6\times8=160\left(m^2\right)\)

Diện tich cần quét vôi là:

\(160-4,76=155,24\left(m^2\right)\)