Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Vì hai bạn cùng thời điểm xuất phát, cùng đến nhà hát vào cùng một lúc nên thời gian đi của hai bạn bằng nhau.
Gọi vận tốc của bạn Lan là \(x\) (km/h); \(x\) > 0
Thời gian bạn Lan đi đến nhà hát bằng thời gian bạn Điệp đi đến nhà hát và bằng:
6 : \(x\) = \(\dfrac{6}{x}\) (giờ)
Vận tốc của bạn Điệp khi đi đến nhà hát là:
7 : \(\dfrac{6}{x}\) = \(\dfrac{7}{6}\)\(x\) (km/h)
Theo bài ra ta có phương trình:
\(\dfrac{7}{6}x\) - \(x\) = 2
\(x\times\)(\(\dfrac{7}{6}\) - 1) = 2
\(x\) \(\times\) \(\dfrac{1}{6}\) = 2
\(x\) = 2 : \(\dfrac{1}{6}\)
\(x\) = 12
Vậy vận tốc của Lan là 12 km/h
Vận tốc của Điệp là: 12 + 2 = 14 (km/h)
Kết luận: Vận tốc của Lan 12km/h
Vận tốc của Điệp là: 14 km/h
9: \(A=\dfrac{\dfrac{1}{4}-5\cdot\left(\dfrac{3}{2}\right)^2}{10\dfrac{5}{9}+\left(-\dfrac{2}{3}\right)^2}=\dfrac{\dfrac{1}{4}-5\cdot\dfrac{9}{4}}{10+\dfrac{5}{9}+\dfrac{4}{9}}\)
\(=\dfrac{\dfrac{1}{4}-\dfrac{45}{4}}{10+1}=\dfrac{-44}{4}:11=-\dfrac{44}{44}=-1\)
\(B=\dfrac{5}{12}\cdot3,7-\dfrac{5}{12}\cdot6,7=\dfrac{5}{12}\cdot\left(3,7-6,7\right)\)
\(=\dfrac{5}{12}\cdot\left(-3\right)=-\dfrac{5}{4}\)
\(A-B=\left(-1\right)-\left(-\dfrac{5}{4}\right)=-1+\dfrac{5}{4}=\dfrac{1}{4}\)
10: \(P=\left(6,8;1,36-\dfrac{29}{3}:\dfrac{58}{9}\right):\dfrac{0.27^3}{0.09^3\cdot2}\)
\(=\left(5-\dfrac{29}{3}\cdot\dfrac{9}{58}\right):\dfrac{\left(0,3\right)^6\cdot3^3}{0,3^6\cdot2}\)
\(=\left(5-\dfrac{3}{2}\right):\dfrac{3^3}{2}=\dfrac{7}{2}\cdot\dfrac{2}{27}=\dfrac{7}{27}\)
\(P+\dfrac{1}{27}=\dfrac{7}{27}+\dfrac{1}{27}=\dfrac{8}{27}=\left(\dfrac{2}{3}\right)^3\)
=>\(P+\dfrac{1}{27}\) là bình phương của một số hữu tỉ
\(\dfrac{x}{\left(x+1\right)\left(x+4\right)}+\dfrac{x}{\left(x+4\right)\left(x+7\right)}+\dfrac{x}{\left(x+7\right)\left(x+10\right)}=\dfrac{x}{\left(x+1\right)\left(x+10\right)}\left(x\notin\left\{-1;-4;-7;-10\right\}\right)\\ \Leftrightarrow x\left[\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}\right]=\dfrac{x}{\left(x+1\right)\left(x+10\right)}\\ \Leftrightarrow\dfrac{1}{3}x\left(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+10}\right)=\dfrac{x}{\left(x+7\right)\left(x+10\right)}\\ \Leftrightarrow\dfrac{1}{3}x\left(\dfrac{1}{x+1}-\dfrac{1}{x+10}\right)=\dfrac{x}{\left(x+1\right)\left(x+10\right)}\\ \Leftrightarrow\dfrac{1}{3}x\cdot\dfrac{9}{\left(x+1\right)\left(x+10\right)}-\dfrac{x}{\left(x+1\right)\left(x+10\right)}=0\\ \Leftrightarrow\dfrac{3x}{\left(x+1\right)\left(x+10\right)}-\dfrac{x}{\left(x+1\right)\left(x+10\right)}\\ =0\\ \Leftrightarrow\dfrac{2x}{\left(x+1\right)\left(x+10\right)}=0\\ \Leftrightarrow2x=0\\ x=0\left(tm\right)\)
Gọi đường thẳng (d): y=ax+b(a\(\ne\)0) là đường thẳng đi qua hai điểm (2;0); (-1;-2)
Thay x=2 và y=0 vào (d), ta được:
\(a\cdot2+b=0\)(1)
Thay x=-1 và y=-2 vào (d), ta được:
\(a\cdot\left(-1\right)+b=-2\left(2\right)\)
Từ (1),(2) ta có hệ phương trình: \(\left\{{}\begin{matrix}2a+b=0\\-a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b+a-b=0-\left(-2\right)\\b=-2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a=2\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{2}{3}\\b=-2\cdot\dfrac{2}{3}=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: (d): \(y=\dfrac{2}{3}x-\dfrac{4}{3}\)
=>\(\dfrac{2}{3}x-y=\dfrac{4}{3}\)
Lời giải:
Gọi khối lượng đầu cá và thân cá lần lượt là $a$ và $b$ (gam). Theo bài ra ta có:
$a = \frac{1}{2}b+350$
$b=a+350$
Thay $b=a+350$ vào điều kiện ban đầu thì:
$a=\frac{1}{2}(a+350)+350$
$a=\frac{1}{2}a+525$
$\frac{1}{2}a=525$
$a=525.2=1050$
$b=a+350=1050+350=1400$
Khối lượng con cá: $a+b+350=1050+1400+350=2800$ (gam) hay $2,8$ kg.
\(15\cdot23+4\cdot3^2-5\cdot7\)
\(=15\cdot23+4\cdot9-35\)
=315+36-35
=315+1
=316
15 x 23 + 4x 3^2 - 5 x 7
= 15 x 23 + 4 x 9 - 5 x 7
= 345 + 36 - 35
= 381 - 35
= 346
9: \(A=\dfrac{\dfrac{1}{4}-5\cdot\left(\dfrac{3}{2}\right)^2}{10\dfrac{5}{9}+\left(-\dfrac{2}{3}\right)^2}=\dfrac{\dfrac{1}{4}-5\cdot\dfrac{9}{4}}{10+\dfrac{5}{9}+\dfrac{4}{9}}\)
\(=\dfrac{\dfrac{1}{4}-\dfrac{45}{4}}{10+1}=\dfrac{-44}{4}:11=-\dfrac{44}{44}=-1\)
\(B=\dfrac{5}{12}\cdot3,7-\dfrac{5}{12}\cdot6,7=\dfrac{5}{12}\cdot\left(3,7-6,7\right)\)
\(=\dfrac{5}{12}\cdot\left(-3\right)=-\dfrac{5}{4}\)
\(A-B=\left(-1\right)-\left(-\dfrac{5}{4}\right)=-1+\dfrac{5}{4}=\dfrac{1}{4}\)
10: \(P=\left(6,8;1,36-\dfrac{29}{3}:\dfrac{58}{9}\right):\dfrac{0.27^3}{0.09^3\cdot2}\)
\(=\left(5-\dfrac{29}{3}\cdot\dfrac{9}{58}\right):\dfrac{\left(0,3\right)^6\cdot3^3}{0,3^6\cdot2}\)
\(=\left(5-\dfrac{3}{2}\right):\dfrac{3^3}{2}=\dfrac{7}{2}\cdot\dfrac{2}{27}=\dfrac{7}{27}\)
\(P+\dfrac{1}{27}=\dfrac{7}{27}+\dfrac{1}{27}=\dfrac{8}{27}=\left(\dfrac{2}{3}\right)^3\)
=>\(P+\dfrac{1}{27}\) là bình phương của một số hữu tỉ