Lớp 11a có 38 học sinh trong đó có 25 học sinh thích học toán, 20 học sin thích môn ngữ văn và 3 học sinh không thích cả hai môn này, Chọn ngẫu nhiên 1 học sinh của lớp. Tính xác suất:
a) Chọn được học sin thích học ít nhất một trong hai môn Toán hoặc Ngữ Văn.
b) Chọn được học sinh thích học cả hai môn Toán và môn Ngữ Văn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\dfrac{4}{10}.\dfrac{5}{12}=\dfrac{1}{6}\)
(xác suất để lấy được bi đỏ ở túi 1 là \(\dfrac{4}{10}\) còn túi 2 là \(\dfrac{5}{12}\))
b) Cách 1: \(P=\dfrac{4}{10}.\dfrac{7}{12}+\dfrac{6}{10}.\dfrac{5}{12}=\dfrac{29}{60}\)
(chia ra làm 2 TH: TH1: lấy được bi đỏ ở túi 1 và bi xanh ở túi 2; TH2: lấy được bi xanh ở túi 1 và bi đỏ ở túi 2)
Cách 2: Xác suất lấy được 2 bi xanh là \(\dfrac{6}{10}.\dfrac{7}{12}=\dfrac{7}{20}\)
\(\Rightarrow P=1-\dfrac{1}{6}-\dfrac{7}{20}=\dfrac{29}{60}\)
Vì A'C'//AC
nên \(\widehat{A'C';BD}=\widehat{AC;BD}=90^0\)
\(\left\{{}\begin{matrix}AC||A'C'\\AC\perp BD\end{matrix}\right.\) \(\Rightarrow A'C'\perp BD\)
Góc giữa 2 đường thẳng bằng 90 độ
Xác suất bắn trượt của 2 xạ thủ lần lượt là 0,24 và 0,32
Xác suất chỉ 1 người bắn trúng là (A trúng B trượt hoặc A trượt B trúng):
\(P=0,76.0,32+0,24.0,68=0,4064\approx0,41\)
Gọi độ dài \(AB=AC=x\)
Gọi D là trung điểm BC \(\Rightarrow AD\perp BC\)
\(AD=\dfrac{BC}{2}=\dfrac{x\sqrt{2}}{2}\)
Từ A kẻ \(AH\perp SD\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)
\(AH=\dfrac{SA.AD}{\sqrt{SA^2+AD^2}}=\dfrac{a.\dfrac{x\sqrt{2}}{2}}{\sqrt{a^2+\dfrac{x^2}{2}}}=\dfrac{a\sqrt{21}}{7}\)
\(\Rightarrow\dfrac{1}{2}x^2=\dfrac{3}{7}\left(a^2+\dfrac{x^2}{2}\right)\Rightarrow x^2=\dfrac{3a^2}{2}\)
\(V=\dfrac{1}{3}SA.\dfrac{1}{2}x^2=\dfrac{a^2}{4}=\dfrac{3}{4}\)
Chắc ý em là \(\left(cos^2x\right)'=2cosx.\left(cosx\right)'\)? Như vậy mới đúng
Đây là công thức đạo hàm của hàm hợp thôi.
\(2\cdot cosx\cdot\left(cosx\right)'=2\cdot cosx\cdot\left(-1\right)sinx=-sin2x\)
\(f\left(x\right)=-x^2+1\)
=>\(f'\left(x\right)=-2x\)
\(f\left(-2\right)=-\left(-2\right)^2+1=-4+1=-3\)
\(f'\left(-2\right)=-2\cdot\left(-2\right)=4\)
Phương trình tiếp tuyến của (P) tại x=-2 là:
y-f(-2)=f'(-2)(x+2)
=>y-(-3)=4(x+2)=4x+8
=>y=4x+8-3=4x+5
a) Số học sinh thích học ít nhất một trong 2 môn là \(38-3=35\)
\(\Rightarrow P=\dfrac{35}{38}\)
b) Gọi M, L lần lượt là tập hợp các học sinh thích học toán và văn.
\(\Rightarrow\left|M\cap L\right|=\left|M\right|+\left|L\right|-\left|M\cup L\right|\) \(=25+20-35=10\)
\(\Rightarrow P=\dfrac{10}{38}=\dfrac{5}{19}\)