K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

Gọi 3 góc của tam giác đó lần lượt là a; b; c ( độ ) ( a; b; c > 0 )

Vì 3 góc của tam giác đó tỷ lệ với 3; 4; 5

=> \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Vì tổng 3 góc trong 1 tam giác bằng 180 độ ( định lý tổng 3 góc trong tam giác )

=> a + b + c = 180 ( độ 

Áp dụng tính chất dãy tỷ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)

\(\Rightarrow\frac{a}{3}=15\Rightarrow a=45\)

\(\Rightarrow\frac{b}{4}=15\Rightarrow b=60\)

\(\Rightarrow\frac{c}{5}=15\Rightarrow b=75\)

Vậy số đo 3 góc của tam giác đó lần lượt là 45 độ; 60 độ; 75 độ

23 tháng 7 2017

Câu hỏi của Nguyen Quang Huy - Toán lớp 7 - Học toán với OnlineMath

23 tháng 7 2017

\(\frac{1}{8}.16^n=2^n\)

\(\Rightarrow\frac{1}{8}=2^n:16^n\)

\(\Rightarrow\frac{1}{8}=\left(\frac{2}{16}\right)^n\)

\(\Rightarrow\frac{1}{8}=\left(\frac{1}{8}\right)^n\)

\(\Rightarrow n=1\)

Vậy n=1

23 tháng 7 2017

3/7-x=1/4-(-3/5)

=> 3/7-x=1/4+3/5

=> 3/7-x=17/20

=> x=3/7-17/20

=> x=-6/35

23 tháng 7 2017

3/7 -x = 1/4 - ( -3/5 )

=> 3/7 -x = 1/4 + 3/5 

=>  3/7 -x = 17/20

=> x = 3/7 - 17 /20

=> x=-6/35

23 tháng 7 2017

Ta chia cả 2 vế a+b<a.b cho a.b

Vậy ta phải chứng minh rằng a+b<a.b đồng nghĩa với việc chứng minh (a+b)/a.b<(a.b)/(a.b)

khi và chỉ khi (a+b)/(a.b)<1

Ta phân tích (a+b)/(a.b) =a/(a.b) + b/(a.b) = 1/b+1/a 

Ta phải cm 1/b+1/a <1 mà điều này luôn đúng khi a và b lớn hơn 2

vậy ta có điều phải chứng minh

23 tháng 7 2017

\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{2x}{2.3}=\frac{5y}{5.2}=\frac{2x}{6}=\frac{5y}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

 \(\frac{2x}{6}=\frac{5y}{10}=\frac{2x+5y}{6+10}\)\(=\frac{32}{16}=2\)

\(\frac{2x}{6}=2\Rightarrow2x=12\Rightarrow x=6\)

\(\frac{5y}{10}=2\Rightarrow5y=20\Rightarrow y=4\)

Vậy ..

23 tháng 7 2017

ta có: x/3 =y/2 => 2x/6 = 5y/10

áp dụng tính chất dãy tỉ số bằng nhau ta có:

 2x/6 = 5y/10 = 2x + 5y/ 6 + 10 = 32/16 = 2

=> x = 3 . 2 = 6 ; y = 2 . 2 = 4

vậy ( x , y ) = ( 6 ; 4 ) 

 
23 tháng 7 2017

A B C E D H F

24 tháng 7 2017

Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [B, E] Đoạn thẳng k: Đoạn thẳng [B, D] Đoạn thẳng p: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [D, K] Đoạn thẳng r: Đoạn thẳng [H, K] Đoạn thẳng s: Đoạn thẳng [B, K] Đoạn thẳng t: Đoạn thẳng [E, K] B = (-1.92, 8.16) B = (-1.92, 8.16) B = (-1.92, 8.16) A = (-1.88, 2.6) A = (-1.88, 2.6) A = (-1.88, 2.6) Điểm D: Giao điểm đường của c, g Điểm D: Giao điểm đường của c, g Điểm D: Giao điểm đường của c, g Điểm C: Điểm trên u' Điểm C: Điểm trên u' Điểm C: Điểm trên u' Điểm E: Trung điểm của D, C Điểm E: Trung điểm của D, C Điểm E: Trung điểm của D, C Điểm H: Giao điểm đường của d, l Điểm H: Giao điểm đường của d, l Điểm H: Giao điểm đường của d, l Điểm K: Giao điểm đường của m, n Điểm K: Giao điểm đường của m, n Điểm K: Giao điểm đường của m, n

Chúng ta dùng kiến thức lớp 7 để chứng minh bài này như sau:

Trên tia BA lấy điểm H sao cho BH = AC. Sau đó vẽ hình chữ nhật AHKD. Nối BK, EK.

Ta thấy AH = 2AB; AE = 2AB nên AH = AE.

Vậy ta thấy ngay \(\Delta BAE=\Delta EDK\left(c-g-c\right)\Rightarrow BE=EK;\widehat{BEA}=\widehat{EKD}\)

hay \(\widehat{BEK}=90^o\) và EB = EK. Vậy tam giác BEK là tam giác vuông cân tại E. Suy ra \(\widehat{BKE}=45^o\)

Ta cũng có \(\Delta BHK=\Delta CBA\left(c-g-c\right)\Rightarrow\widehat{HBK}=\widehat{BCA}\)

Do AHKD là hình chữ nhật nên HB // DK, suy ra \(\widehat{HBK}=\widehat{BKD}\) (So le trong)

Vậy nên \(\widehat{ACB}+\widehat{BEA}=\widehat{HBK}+\widehat{EKD}=\widehat{BKD}+\widehat{EKD}=\widehat{BKE}=45^o\) (đpcm)